• Title/Summary/Keyword: sound technology

Search Result 1,733, Processing Time 0.033 seconds

Simple Estimation of Sound Source Directivity in Diffused Acoustic Field: Numerical Simulation (확산음향장에서의 음원 지향성 간이추정: 수치시뮬레이션)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.421-426
    • /
    • 2019
  • The directivity of an underwater sound source should be measured in an acoustically open field such as a calm sea or lake, or an anechoic water tank facility. However, technical difficulties arise when practically implementing this in open fields. Signal processing-based techniques such as a sound intensity method and near-field acoustic holography have been adopted to overcome the problem, but these are inefficient in terms of acquisition and maintenance costs. This study established a simple directivity estimation technique with data acquisition, filtering, and analysis tools. A numerical simulation based on an acoustic radiosity method showed that the technique is practicable for sound source directivity estimation in a diffused reverberant acoustic field like a reverberant water tank.

Voices from Public Assembly Trumpets: Sound Tool and Student Movement in Republican China

  • Xu, Ziming
    • Journal of East-Asian Urban History
    • /
    • v.2 no.2
    • /
    • pp.201-234
    • /
    • 2020
  • In recent years, the studies on the student movement in Republican China have been more accurate. However, some areas still remain uncovered, such as the technology of student movement. In this paper, the author focuses on how students utilize sound tools in their movements, especially in public meetings. During the May 4th Movement and the 1920s, Chinese students mainly used speaking trumpets without electricity. In the 1930s, electric tools began to appear in student movement for sound propagation. In the student movement of postwar China, students of various political positions could make a use of loudspeaker, wired broadcasting, and megaphone or other equipments. The battle of sound had been part of the Chinese civil war. In general, sound tools had taken an important role in the history of student radicalism.

A hybrid algorithm of underwater structure vibration and acoustic radiation-propagation in ocean acoustic channel

  • Duan, Jia-xi;Zhang, Lin;Da, Liang-long;Sun, Xue-hai;Chen, Wen-jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.680-690
    • /
    • 2020
  • In ocean environment, the sound speed gradient of seawater has an important influence on far field sound propagation. The FEM/BEM is used to decouple the vibroacoustic radiation of the spherical shell, and the Green function of the virtual source chain is adopted for decoupling. For far field radiated Sound Pressure Level (SPL), the Beam Displacement Ray normal Mode (BDRM) is employed. The vibration and near-/far-field radiated SPL of spherical shell is analyzed in shallow sea uniform layer, negative/positive gradient, negative thermocline environment, and deep-sea sound channel. Results show that the vibroacoustic radiation of spherical shell acted at 300Hz can be analogous to dipole. When the radiated field of the spherical shell is dominated by large-grazing-angle waves, it can be analogous to vertically distributed dipole, and the far field radiated SPL is lower; while similar to horizontally distributed dipole if dominated by small-grazing-angle waves, and the far field SPL is high.

Application of deep learning for accurate source localization using sound intensity vector (음향인텐시티 벡터를 통해 정확한 음원 위치 추정을 위한 딥러닝 적용)

  • Iljoo Jeong;In-Jee Jung;Seungchul Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.72-77
    • /
    • 2024
  • Recently, the necessity for sound source localization has grown significantly across various industrial sectors. Among the sound source localization methods, sound intensimetry has the advantage of having high accuracy even with a small microphone array. However, the increase in localization error at high Helmholtz numbers have been pointed out as a limitation of this method. The study proposes a method to compensate for the bias error of the measured sound intensity vector according to the Helmholtz numbers by applying deep learning. The method makes it possible to estimate the accurate direction of arrival of the source by applying a dense layer-based deep learning model that derives compensated sound intensity vectors when inputting the sound intensity vectors measured by a tetrahedral microphone array for the Helmholtz numbers. The model is verified based on simulation data for all sound source directions with 0.1 < kd < 3.0. One can find that the deep learning-based approach expands the measurement frequency range when implementing the sound intensimetry-based sound source localization method, also one can make it applicable to various microphone array sizes.

Research of real-time image which is responding to the strings sound in art performance (무대 공연에서 현악기 소리에 반응하는 실시간 영상에 관한 연구)

  • Jang, Eun-Sun;Hong, Sung-Dae;Park, Jin-Wan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.185-190
    • /
    • 2009
  • Recent performing-art has a trend to be new cultural contents style which mixes various genre not just traditional way. Especially in stage performance, unique performance is playing using high technology and image. In sound performance, one of technology, a new experiment is trying which re-analyze the sound and mixes the result with image. But in public performance we have a technical difficulty with making visualization regarding the sound in realtime. Because we can not make visualization with instant sound from performers and audience it is difficult to interact smoothly between performer and audience. To resolve this kind of restriction, this paper suggests Real-time sound visualization. And we use string music instrument for sound source. Using the MaxMSP/Jitter based the Midi, we build image control system then we test and control the image with Korg Nano Kontrol. With above experiment we can verify verious emotion, feeling and rhythm of performer according to performance environment and also we can verify the real time interactive image which can be changed momently by performer's action.

  • PDF

Sound Absorption Capability and Anatomical Features of Highly Sound Absorptive Wood (고흡음성 목재의 흡음성능과 구조적 특징)

  • Kang, Chun-Won;Kang, Wook;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.292-297
    • /
    • 2010
  • Sound absorption capability and anatomical features of kagikazura (Uncaria rhynchophylla) and larch (lalix kaemferi) wood were estimated. Sound absorption coefficients had been measured by the two microphone transfer function method and anatomical features of kagikazura wood examined by SEM observation. The sound absorption coefficients of Uncaria rhynchophylla was higher than lalix kaemferi. Especially, in the frequency range of 1 to 4KHz, sound absorption coefficients of kagikazura was about 2~3 times higher than those of lalix kaemferi. Abundant and big vessel observed on the cross sectional surface of kagikazura wood and simple perforation plate observed on the longitudinal surface. It was surmised that the abundant big vessel element and simple perforation plate behaved as a sound absorbing pore.

A Response of the Shoal of Chub Mackerel ( Scomber Japonics , HOVTTYUN ) to Underwater Sound (수중음에 대한 고등어 어군의 반응)

  • 서두옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.1
    • /
    • pp.12-17
    • /
    • 1989
  • A field experiment was carried out of confirm the effect of underwater sound on the luring of fish school of chub mackerel in the coast of Idousyo Island. Underwater sound that was made use of luring of fish school was pure sound and interval pure sound which the frequencies of the sound were 150Hz and 200Hz, respectively. The results of the observation of hooking and recording paper of fish finder indicate that the effect of emitting sound at 20m in the depth of water was remarkable for the luring of fish school of chub mackerel. The vertical pure sound pressure level at 150Hz and 200Hz of the water layer that was lured the fish school of chub mackerel were 140.1dB and 146.dB at 30m, 121.0dB and 126.6dB at 70m and 141.9dB and 120.5dB at 120m in the depth of water, respectively.

  • PDF

The Higher Education Possibility of Sound Art in Korea - Focusing on the Proposal of Creative Fusion Liberal Arts Learning (사운드아트의 국내 고등교육 가능성 - 창의적 융복합 교양교과 제안을 중심으로)

  • Irene Eunyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.443-451
    • /
    • 2023
  • Sound Art (Sonic Art) is a branch of contemporary art that has been practiced dominantly in Europe and the Americas since the mid-20th century; and in Korea, it tends to be regarded as a multiple art field or as a subgenre of contemporary music or media art. Since the 2000s, some leading universities in North America and Europe have been opened sound art majors, producing talented people who specialize in this field or work as practical artists, yet it is still considered a non-mainstream art field. It is difficult to find schools that have opened sound arts as their major program in domestic universities. Along with the introduction of a liberal arts curriculum model and teaching methods used in the <Sound Art of Modern Society> course operated in a four-year university in South Korea, this paper discusses the possibility of using sound art as a main subject in liberal arts learning in higher education as a creative fusion liberal arts subject.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

Changes in Sound Absorption Capability and Air Permeability of Malas (Homalium foetidum) Specimens after High Temperature Heat Treatment

  • Kang, Chun-Won;Li, Chengyuan;Jang, Eun-Suk;Jang, Sang-Sik;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.149-154
    • /
    • 2018
  • The changes in sound absorption capability and air permeability of Malas wood after high temperature heat treatment were investigated. The average air permeability of Malas in longitudinal direction after heated under the temperature of $190^{\circ}C$ during 3 hours was about 23.48 darcys and that of control was about 3.11 darcys. The noise reduction coefficients of Malas specimens were 17% for treatment and 10% for control. The means of sound absorption coefficient of specimens in the frequency range of 50~6,400 Hz were 42% for treatment and 17% for control, respectively.