• Title/Summary/Keyword: sound field transmitted force

Search Result 3, Processing Time 0.016 seconds

Noise and Vibration Analysis of a cylindrical shell by controlling ER mount (ER 마운트 제어에 의한 원통쉘의 진동소음 해석)

  • Jung, Woo-Jin;Jung, Weui-Bong;Seo, Young-Soo;Cho, Hyun-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.459-463
    • /
    • 2002
  • ER mount can be used instead of rubber mount in cylindrical shell to improve the vibration and noise performance. The noise radiated by cylindrical shell will be reduced by reducing the force transmitted to the cylindrical shell through ER mount. In this paper LQ control theory is used to reduce the transmitted force to the cylindrical shell. The finite element method of cylindrical shell is formulated by NASTRAN and its vibrating shape is calculated in frequency domain. The noise radiated from the cylindrical shell is calculated by the use of SYSNOISE, the boundary element CAE tool. The vibration of the cylindrical shell and radiated acoustic pressure is compared in case of both controlled and uncontrolled ER mount.

  • PDF

Noise and Vibration Analysis of a cylindrical shell by controlling ER mount (ER마운트 제어에 의한 원통셸의 진동소음 해석)

  • Jung, Woo-Jin;Jung, Weui-Bong;Seo, Young-Soo;Cho, Hyun-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.348.2-348
    • /
    • 2002
  • ER mount is often used instead of rubber mount in cylindrical shell to improve the vibration and noise performanec. The noise radiated by cylindrical shell will be reduced by reducing the force transmitted to the cylindrical shell through ER mount. In this paper, LQ control theory is used to reduce the transmitted force to the cylindrical shell. The finite element method of cylindrical shell is formulated by NASTRAN and its vibrating shape is calculated in frequency domain. (omitted)

  • PDF

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.