• Title/Summary/Keyword: sound based information

Search Result 637, Processing Time 0.026 seconds

Machine Fault Diagnosis Method based on DWT Power Spectral Density using Multi Patten Recognition (다중 패턴 인식 기법을 이용한 DWT 전력 스펙트럼 밀도 기반 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min;Vununu, Caleb;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1233-1241
    • /
    • 2019
  • The goal of the sound-based mechanical fault diagnosis technique is to automatically find abnormal signals in the machine using acoustic emission. Conventional methods of using mathematical models have been found to be inaccurate due to the complexity of industrial mechanical systems and the existence of nonlinear factors such as noise. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose an automatic fault diagnosis method using discrete wavelet transform and power spectrum density using multi pattern recognition. First, we perform DWT-based filtering analysis for noise cancelling and effective feature extraction. Next, the power spectral density(PSD) is performed on each subband of the DWT in order to effectively extract feature vectors of sound. Finally, each PSD data is extracted with the features of the classifier using multi pattern recognition. The results show that the proposed method can not only be used effectively to detect faults as well as apply to various automatic diagnosis system based on sound.

Automatic Tag Classification from Sound Data for Graph-Based Music Recommendation (그래프 기반 음악 추천을 위한 소리 데이터를 통한 태그 자동 분류)

  • Kim, Taejin;Kim, Heechan;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.399-406
    • /
    • 2021
  • With the steady growth of the content industry, the need for research that automatically recommending content suitable for individual tastes is increasing. In order to improve the accuracy of automatic content recommendation, it is needed to fuse existing recommendation techniques using users' preference history for contents along with recommendation techniques using content metadata or features extracted from the content itself. In this work, we propose a new graph-based music recommendation method which learns an LSTM-based classification model to automatically extract appropriate tagging words from sound data and apply the extracted tagging words together with the users' preferred music lists and music metadata to graph-based music recommendation. Experimental results show that the proposed method outperforms existing recommendation methods in terms of the recommendation accuracy.

Internet based Intruder detecting system Using Micropnone array (마이크 어레이를 이용한 네트워크 기반의 침입탐지 시스템)

  • Kim, Jong-Hwa;Ryu, Hyun-Ho;Kwon, Min-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.363-364
    • /
    • 2006
  • The direction of arrival of the sound signal can be derived from the time differences at the microphone array and the motor controls the camera to point at the direction of the sound signal. You can get through to the homepage and confirm the camera image on a client computer which connects to the server computer through Internet.

  • PDF

Internet based Intruder detecting system Using Micropnone array (마이크 어레이를 이용한 네트워크 기반의 침입탐지 시스템)

  • Kim, Jong-Hwa;Ryu, Hyun-Ho;Kwon, Min-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.341-342
    • /
    • 2006
  • The direction of arrival of the sound signal can be derived from the time differences at the microphone array and the motor controls the camera to point at the direction of the sound signal. You can get through to the homepage and confirm the camera image on a client computer which connects to the server computer through Internet.

  • PDF

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm (음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계)

  • Ghil, Min-Sik;Kwak, Dong-Kurl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.53-59
    • /
    • 2020
  • This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.

Headphone-based multi-channel 3D sound generation using HRTF (HRTF를 이용한 헤드폰 기반의 다채널 입체음향 생성)

  • Kim Siho;Kim Kyunghoon;Bae Keunsung;Choi Songin;Park Manho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.71-77
    • /
    • 2005
  • In this paper we implement a headphone-based 5.1 channel 3-dimensional (3D) sound generation system using HRTF (Head Related Transfer Function). Each mono sound source in the 5.1 channel signal is localized on its virtual location by binaural filtering with corresponding HRTFs, and reverberation effect is added for spatialization. To reduce the computational burden, we reduce the number of taps in the HRTF impulse response and model the early reverberation effect with several tens of impulses extracted from the whole impulse sequences. We modified the spectrum of HRTF by weighing the difference of front-back spec01m to reduce the front-back confusion caused by non-individualized HRTF DB. In informal listening test we can confirm that the implemented 3D sound system generates live and rich 3D sound compared with simple stereo or 2 channel down mixing.

Sound Monitoring System of Machining using the Statistical Features of Frequency Domain and Artificial Neural Network (주파수 영역의 통계적 특징과 인공신경망을 이용한 기계가공의 사운드 모니터링 시스템)

  • Lee, Kyeong-Min;Vununu, Caleb;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.837-848
    • /
    • 2018
  • Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.

Cat Monitoring and Disease Diagnosis System based on Deep Learning (딥러닝 기반의 반려묘 모니터링 및 질병 진단 시스템)

  • Choi, Yoona;Chae, Heechan;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.233-244
    • /
    • 2021
  • Recently, several ICT-based cat studies have produced some successful results, according to academic and industry sources. However, research on the level of simply identifying the cat's condition, such as the behavior and sound classification of cats based on images and sound signals, has yet to be found. In this paper, based on the veterinary scientific knowledge of cats, a practical and academic cat monitoring and disease diagnosis system is proposed to monitor the health status of the cat 24 hours a day by automatically categorizing and analyzing the behavior of the cat with location information using LSTM with a beacon sensor and a raspberry pie that can be built at low cost. Validity of the proposed system is verified through experimentation with cats in actual custody (the accuracy of the cat behavior classification and location identification was 96.3% and 92.7% on average, respectively). Furthermore, a rule-based disease analysis system based on the veterinary knowledge was designed and implemented so that owners can check whether or not the cats have diseases at home (or can be used as an auxiliary tool for diagnosis by a pet veterinarian).

Efficient Implementation of IFFT and FFT for PHAT Weighting Speech Source Localization System (PHAT 가중 방식 음성신호방향 추정시스템의 FFT 및 IFFT의 효율적인 구현)

  • Kim, Yong-Eun;Hong, Sun-Ah;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • Sound source localization systems in service robot applications estimate the direction of a human voice. Time delay information obtained from a few separate microphones is widely used for the estimation of the sound direction. Correlation is computed in order to calculate the time delay between two signals. In addition, PHAT weighting function can be applied to significantly improve the accuracy of the estimation. However, FFT and IFFT operations in the PHAT weighting function occupy more than half of the area of the sound source localization system. Thus efficient FFT and IFFT designs are essential for the IP implementation of sound source localization system. In this paper, we propose an efficient FFT/IFFT design method based on the characteristics of human voice.