DOI QR코드

DOI QR Code

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm

음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계

  • Ghil, Min-Sik (Graduate School of Disaster Prevention, Kangwon National University) ;
  • Kwak, Dong-Kurl (Graduate School of Disaster Prevention, Kangwon National University)
  • 길민식 (강원대학교 방재전문대학원) ;
  • 곽동걸 (강원대학교 방재전문대학원)
  • Received : 2020.07.15
  • Accepted : 2020.08.20
  • Published : 2020.08.28

Abstract

This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.

본 논문은 음원 탐지 및 음원 위치를 추정하는 IoT Device 시스템에 관한 것으로, 보다 구체적으로는 복수의 마이크로폰 센서로부터 수집된 음원 신호의 도달 시간차를 분석하여 음원의 방향을 정확히 검출하고, IoT 센서를 이용하여 음원의 발생방향을 추적할 수 있는 음원 방향 탐지 Device를 이용한 시스템이다. 음파를 이용하여 위치를 추정하는 기술은 예전부터 군사적 목적으로 개발되어 왔지만 현재는 이를 응용하여 방범·방재 분야 등에 많이 쓰이고 있다. 이에 따라 본 시스템의 제작을 통해 옥외에 설치한 후 여러 방향에서 음원 발생시켜 성능 시험을 실시하였다. 그 결과 음향 탐지 영역 140dB, 반응시간 1초 이내, 방향 각도 분해능 1° 이내로 매우 정확하게 동작함을 확인할 수 있었다. 향후에는 본 설계안을 바탕으로 빅데이터 분석을 통한 인공지능 알고리즘을 반영하여 보다 신뢰성을 향상시켜 상용화할 계획에 있다.

Keywords

References

  1. J. Rajagukguk & N. E. Sari. (2017). Detection System of Sound Noise Level (SNL) Based on Condenser Microphone Sensor, IOP Conf. Series: Journal of Physics: Conf. Series 970 , 1-7. DOI : 10.1088/1742-6596/970/1/012025
  2. D. Stowell, D. Giannoulis & E. Benetos. (2015). Detection and Classification of Acoustic Scenes and Events, IEEE TRANSACTIONS ON MULTIMEDIA, 17(10), 1733-1746. DOI : 10.1109/TMM.2015.2428998
  3. S. Jeon, K. W. Park, H. W. Ryu & Y. H. Kim. (2010). A Design of M2M BASED Intelligent Operating System for Effective Pollution Control Facilities, 2010 International Conference on Information and Communication Technology Convergence (ICTC), 521-522. DOI : 10.1109/ICTC.2010.5674786
  4. K. Kalgaonkar, P. Smaragdis & B. Raj. (2007). Sensor and Data Systems, Audio-Assisted Cameras and Acoustic Doppler Sensors, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1-2. DOI : 10.1109/CVPR.2007.383533
  5. K. Yamaoka, N. Ono, S. Makino & T. Yamada. (2017). Abnormal sound detection by two microphones using virtual microphone technique, Proceedings of APSIPA Annual Summit and Conference 2017, 478-481. DOI : 10.1109/APSIPA.2017.8282079
  6. C. Liu, B. C. Wheeler, W. D. O'Brien Jr., R. C. Bilger, C. R. Lansing & A. S. Feng. (2000). Localization of Multiple Sound Sources with Two Microphones, Journal of the Acoustical Society of America, 108(4), 1888-1905. DOI : 10.1121/1.1290516
  7. A. Pourmohammad & S.M. Ahadi. (2012). Real Time High Accuracy 3-D PHAT-Based Sound Source Localization Using a Simple 4-Microphone Arrangement, IEEE Systems Journal, 6(3), 455-468. DOI : 10.1109/JSYST.2011.2176766
  8. B. Y. Whang, J. H. Jung & C. M. Lee. (2015). Advanced Sound Source Localization Study Using De-noising Filter based on the Discrete Wavelet Transform, Journal of Institute of Control, Robotics and System, 21(12), 1185-1192. DOI : 10.5302/J.ICROS.2015.15.0012
  9. C. Y. Choi & D. M. Lee. (2013). Fuzzy Logic Based Sound Source Localization System Using Sound Strength in the Underground Parking Lot, The Journal of Korean Institute of Communications and Information Sciences, 38C(05), 434-439. DOI : 10.7840/kics.2013.38C.5.434
  10. S. H. Chun & Y. J. Chun. (2019). Performance Analysis of Sound Event Detection Based on CRNN, The Journal of Korean Institute of Information Technology, 17(5), 83-90. DOI : 10.14801/jkiit.2019.17.5.83
  11. S. Adavanne, A. Politis & T. Virtanen. (2018). Sound Event Localization and Detectionof Overlapping Sources Using Convolutional Recurrent Neural Networks, IEEE Journal of Selected Topics in Signal Processing, 13(1), 34-48. DOI : 10.1109/JSTSP.2018.2885636
  12. G. Raboshchuk, C. Nadeu, P. Jancovic, A. P. Lilja, M. Kokuer, B. M. Mahamud & A. R.. Veciana. (2017). A Knowledge-Based Approach to Automatic Detection of Equipment Alarm Sounds in a Neonatal Intensive Care Unit Environment, IEEE Journal of Translational Engineering in Health and Medicine, 6, 1-10. DOI : 10.1109/JTEHM.2017.2781224
  13. S. W. Suh, W. T. Lim, Y. H. Jeong, T. J. Lee & H. Y. Kim. (2018). Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset, Journal of Broadcast Engineering, 23(6), 855-865. DOI : 10.5909/JBE.2018.23.6.855