• Title/Summary/Keyword: sorption kinetics

Search Result 96, Processing Time 0.03 seconds

Reduction Kinetics of Hexavalent Chromium during Biosorption onto the Protonated Ecklonia Biomass

  • Park, Dong-Hui;Yun, Yeong-Sang;Park, Jeong-Jin;Kim, Sang-Min;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.113-116
    • /
    • 2000
  • Hexavalent chromium was removed by means of biosorption onto the protonated brown seaweed biomass. During the biosorption Cr(VI) was reduced to Cr(III), which resulted in accumulation of Cr(III) in the solution. The Cr(VI) reduction rate increased with increases of initial Cr(VI) and biosorbent concentrations and decrease of solution pH. Based upon the experimental results at various conditions, we suggested the mechanism for the chromium removal as following serial reactions: (1) sorption of anionic Cr(VI) onto the positively charged site of biomass, (2) reduction of Cr(VI) to Cr(III) on the positively charged site, (3) desorption of Cr(III) from the positively charged site, and (4) sorption of cationic Cr(III) onto the negatively charged site of biomass.

  • PDF

Differentiation of Sorptive Bindings of Some Radionuclides with Sequential Chemical Extractions in Sandstones (순차적화학추출법을 사용한 방사성핵종의 사암에 대한 수착유형 평가)

  • Park, Chung-Kyun;Hahn, Pil-Soo;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.461-470
    • /
    • 1994
  • Sorption experiments of $^{60}$ Co, $^{85}$ Sr. and $^{137}$ Cs onto sandstone particles in a batch were carried out to investigate the migration mobility. Sorption kinetics and reversibility as well as sorption mechanisms were examined. Sorption reaction occurred mostly within 10 hours on the outer surface of the sandstone particle but diffusion into the inner surface of the mineral has still occurred after that time. In order to distinguish sorption types of radionuclides, a sequential chemical extraction was introduced. The sorbed radionuclides were then extracted by applying different solutions of synthetic groundwater, CaCl$_2$, KCl and KOX-HA Especially KCl is adopted to extract the ion-exchanged cesium. Sorption types considered are reversible sorption under groundwater condition, ion exchange, association with ferro-manganese oxides or oxyhydroxides, and irreversible fixation. Strontium sorbs onto the sandstone surface mainly by fast and reversible ion exchange reaction. However, cobalt and cesium do not sorb by simple process. The main sorptive binding of cobalt was the association with ferro-manganese oxides and the secondary one was irreversible fixation. Diffusion into the lattice of minerals controlled the sorption rate of cobalt The main sorptin type of cesium was irreversible fixation, while ion exchange reaction was the secondary importance. Hence the oreder of migration mobility for the three radionuclides was Sr$^{2+}$ > Co$^{2+}$ > Cs$^{+}$ in the sandstones.

  • PDF

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Kinetic study of high-temperature removal of $H_2S$ by Ca-based sorbents (황화수소 제거를 위한 칼슘계 고온탈황제의 황화반응속도에 관한 연구)

  • 김영식;전지환
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.04a
    • /
    • pp.144-153
    • /
    • 1998
  • Sorbents of calcined limestone and oyster particles having a diameter of about 0.63mm were exposed to simulate fuel gases containing 5000ppmv H2S for temperatures ranging from 600 to 800C in a TGA. The reaction between CaO and H2S proceds via an unreacted shrinking core mechanism. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. The kinetics of the sorption of H2S by CaO is sensitive to the reaction temperature and particle size, and the reaction rate of oyster was faster than the calcined limestone.

  • PDF

Kinetic of High-Temperature Removal of $H_2S$ by Ca-based Sorbents (황화수소 제거를 위한 칼슘계 고온 탈황제의 황화반응속도)

  • 김영식;전지환;손병현;정종현;정덕영;오광중
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.125-133
    • /
    • 1999
  • Sorbents of calcined limestone and oyster particles having a diameter of about 0.63mm were exposed to simulated fuel gases containing 5000ppm $H_2S$ for temperatures ranging from 600 to 80$0^{\circ}C$ in a TGA (Thermalgravimetric analyzer). The reaction between CaO and $H_2S$ proceeds via an unreacted shrinking core mechanism. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. The kinetics of the sorption of $H_2S$ by CaO is sensitive to the reaction temperature and particle size, and the reaction rate of oyster was faster than the calcined limestone.

  • PDF

경유오염토양에서 미생물에 의한 경유의 생물학적 분해 모델

  • No, Sang-Cheol;Jang, Deok-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.418-421
    • /
    • 2000
  • A model was developed to describe the microbial decontamination of diesel contaminated soil in a soil column. The biodegradation rate of diesel in nature depends on temperature and the pH of soil, availability of nutrients, oxygen and water. The soil moisture content is one of the essential factors because it characterizes the availability not only of water to microorganisms but also of oxygen and nutrient dissolved in soil. In this work, the rate of biodegradation was modeled by coupling Michaelis-Menten kinetics for the aqueous-phase solute with adsoption-desoption equation for diesel sorption and desorption from soil.

  • PDF

Fluoride Sorption Property of Lanthanum Hydroxide (란탄수산화물의 불소 흡착 특성)

  • Kim, Jung-Hwan;Park, Hyun-Ju;Jung, Kyung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.714-721
    • /
    • 2010
  • This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

The application of model equations to Non-Fickian diffusion observed in Fluoropolymers

  • Lee, Sangwha
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.34-35
    • /
    • 1996
  • The diffusional behavior of many non-solvents in glassy or semicrystalline polymers cannot be adequately described by a concentration-dependent form of Fick's law, especially when mass transfer is coupled with structural changes. Many mathematical models have been devised to interprete non-Fickian diffusion dominated by relaxation kinetics. In formulation of non-Fickian diffusion mathematics, therefore, the most important factor to consider is how relaxation effects can influence the governing constitutive equation and boundary conditions. That is, relaxation parameters can be accommodated by variable boundary conditions or a modified continuity equation, or both, depending on specific systems and conditions (Frish, 1980). Accoring to Astarita and Nicolais (1983), the model equations can be broadly categorized as continuous or discontinuous. Continuous model equations encompass phenomena where the structural change takes place gradually over the whole volume of the polymer sample (Crank, 1953; Long and Richman, 1961; Berens and Hopfenberg, 1978). On the other hand, discontinuous model equations deal with the phenomena where the morphological change appears to be abrupt (Li, 1984). Four mathematical models with different relaxation parameters were applied to fit the anomalous sorption data observed in fluoropolymers (PVDF, ECTFE). The fitted result for PVDF-benzene sorption data is shown in Fig. 1.

  • PDF

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

The Determination of Diffusion and Partition Coefficients of PUF (폴리우레탄 폼의 휘발성 유기화합물 확산 및 분배계수 산정)

  • Park, Jin-Soo;Little, John C.;Kim, Shin-Do;Lee, Hee-Kwan;Kong, Boo-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • The diffusion and partition coefficients of polyurethane foam (PUF) are estimated using a microbalance experiment and small chamber test. The microbalance is used to measure sorption/desorption kinetics and equilibrium data. When the diffusion condition is controlled in the chamber of the sample, interactions between volatile organic compounds (VOCs) and PUF can lead to the estimation of a relatively homogenous rate of mass transfer in the interiors and surfaces of PUF. The estimates of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) are shown to be independent of the concentrations of VOCs. This approach, if applied to a diffusion-controlled or physically-based model, can facilitate more precise prediction of their source/sink behavior. Although further research and more rigorous validation is needed, an emission model applied with the diffusion and partition coefficients from this research holds promise for the improvement of reliability in predicting the behavior of VOCs emitted from porous building materials by D and K.