Fluoride Sorption Property of Lanthanum Hydroxide

란탄수산화물의 불소 흡착 특성

  • Kim, Jung-Hwan (Division of Environmental Engineening, Chosun University) ;
  • Park, Hyun-Ju (Department of Environmental Engineering, Mokpo National University) ;
  • Jung, Kyung-Hun (Division of Environmental Engineening, Chosun University)
  • Received : 2010.06.04
  • Accepted : 2010.07.29
  • Published : 2010.07.31

Abstract

This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

본 연구에서는 수용액 중의 불소이온을 제거할 수 있는 흡착제로서 란탄수산화물의 활용 가능서을 검토하였다. 란탄 수산화물을 대상으로 회분식 흡착실험을 수행하고, 그 결과를 바탕으로 pH 영향, 흡착속도, 흡착등온 및 흡착에너지 등을 살펴보았다. 란탄수산화물은 pH 8.8 이하의 산성영역으로 갈수록 불소 제거율이 증가하는 특성을 나타냈다. 란탄수산화물의 불소 흡착평형은 Langmuir isotherm 보다는 Fruendlich isotherm 모델과 더 일치하였다. D-R 모델로부터 구한 흡착에너지는 9.21 kJ/mol로 이온교환메커니즘을 나타내는 범위에 속하였으며, 흡착속도는 2차 속도모델과 일치하는 거동을 보였다. 열역학적 상수 ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$${\Delta}S^{\circ}$는 란탄수산화물의 불소흡착특성이 자발적이고 흡열반응임을 나타냈다. 란탄수산화물은 1N NaOH로 재생 가능하며, 실 지하수에 대한 흡착실험 결과, 란탄수산화물이 PA보다 불소에 대한 이온선택성은 물론 제거율이 높았다.

Keywords

References

  1. Sujana, M. G., Thakur, R. S. and Rao, S. B., "Removal of fluoride from aqueous solution by using alum sludge," J. Colloid Interface Sci., 206, 94-101(1998). https://doi.org/10.1006/jcis.1998.5611
  2. Toyoda, A. and Taira, T., "A new method for treating fluorine wastewater to reduce sludge and running costs," IEEE Trans. Semiconduct. Manufact., 13(3), 305-309(2000). https://doi.org/10.1109/66.857940
  3. Ghorai, S. and Pant, K. K., "Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina," Sep. Purif. Technol., 42, 265-271(2005). https://doi.org/10.1016/j.seppur.2004.09.001
  4. USEPA, National Primary Drinking Water Standard, EPA 816-F-03-016(2003).
  5. Mameri, N., Yeddou, A. R., Lounici, H., Belhocine, D., Grib, H. and Bariou, B., "Defluorination of septentrional Sahara water of North Africa by electro coagulation process using bipolar aluminum electrodes," Water Res., 32(5), 1604-1612 (1998). https://doi.org/10.1016/S0043-1354(97)00357-6
  6. Popat, K. M., Anand, P. S. and Dasare, B. D., "Selective removal of fluoride ions from water by the aluminum form of the aminomethylphosphonic acid-type ion exchanger," React. Polym., 23, 23-32(1994). https://doi.org/10.1016/0923-1137(94)90107-4
  7. Yang, C. L. and Dluhy, R., "Electrochemical generation of aluminum sorbent for fluoride adsorption," J. Hazard. Mater., B94, 239-252(2002).
  8. Smith, B. E., "Desalting and groundwater management in the San Joaquin valley," Desalination, 87, 151-174(1992). https://doi.org/10.1016/0011-9164(92)80139-Z
  9. Amor, Z., Bariou, B., Mameri, N., Taky, M., Nicolas, S. and Elmidaoui, A., "Fluoride removal from Corn brackish water by electrodialysis," Desalination, 133, 215-223(2001). https://doi.org/10.1016/S0011-9164(01)00102-3
  10. Schwarz, J. A., Driscoll, C. T. and Bhanot, A. K., "The zero point charge of silica-alumina oxide suspension," J. Colloid Interface Sci., 97, 55-61(1984). https://doi.org/10.1016/0021-9797(84)90274-1
  11. Meeussen, J. C. L., Scheidegger, A., Hiemstra, T., Riemsdijk, W. H. van, and Borkovec, M., "Predicting multi-component adsorption and transport of fluoride at variable pH in a goethite-silica sand system," Environ. Sci. Technol., 30, 481-488(1996). https://doi.org/10.1021/es950178z
  12. Hiemstra, T. and Riemsdijk, W. H. van, "Fluoride adsorption on goethite in relation to different types of surface sites," J. Colloid Interface Sci., 225, 94-104(2000). https://doi.org/10.1006/jcis.1999.6697
  13. Stumm, W. and Morgan, J. J., Aquatic Chemistry, 2nd ed., Wiley interscience, John Wiley & Sons(1981).
  14. Weber, J. J., Adsorption in Physicochemical Processes for Water Quality Control, Wiley Interscience, NY, In Metcalf, R. L. and Pitts, J. N.(Eds.), 199-259(1972).
  15. Freundlich, H. M. F., "Over the adsorption in solution," J. Phys. Chem., 57, 385-470(1906).
  16. Dubinin, M. M., Zaverina, E. D. and Radushkevich, L. V., "Sorption and structure of active carbons. I. Adsorption of organic vapors," Zh. Fiz. Khim., 21, 1351-1362(1947).
  17. Ho, Y. S. and McKay, G., "A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents," Trans IChemE, Part B, Process Saf. Environ. Prot., 76, 332-340(1998). https://doi.org/10.1205/095758298529696
  18. Blanchard, G., Maunaye, M. and Martin, G., "Removal of heavy metals from waters by means of natural zeolites," Water Res., 18, 1501-1507(1984). https://doi.org/10.1016/0043-1354(84)90124-6
  19. Weber, W. J. and Morris, J. C., "Kinetics of adsorption on carbon from solution," J. Sanit. Eng. Div. ASCE., 89, 31-59(1963).
  20. Hamdaoui, O., "Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick," J. Hazard. Mater., B135, 264-273(2006).
  21. Smith, J. M., Chemical Engineering Kinetics, 3rd ed., Mc-Graw-Hill, Singapore(1981).