• Title/Summary/Keyword: sonic vibration

Search Result 37, Processing Time 0.023 seconds

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

An experimental study on plaque removal effect through the acting types of the electric toothbrushes (전동칫솔모의 작동형태에 따른 치면세균막 제거율에 관한 실험연구)

  • Lee, Cheon-Hee;Ahn, Sun-Ha;Jang, Young-Ho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.11 no.4
    • /
    • pp.465-474
    • /
    • 2011
  • Objectives : The removal of most reliable mechanical dental plaque that is to say tooth brushing was generalized to control of dental plaque, many oral health goods have also developed due to the effect differences followed by individual habit. The electric toothbrush have studied and developed widely as major field of study that electric toothbrush having various moving phase was sold and developed at the market. Methods : Accordingly author studied about selling electric toothbrushes shape (vibration type, ultra-sonic minuteness vibration type, semi rotation type) to raise the efficiency after comparing to the moving them that total 8 groups classified by poor tooth models for example normal set of tooth, crowding tooth, bracket attached tooth, prosthetic status etc. and executed plaque removal effect on the tooth through comparing experiment. Results : The removal rate of artificial plaque on the tooth was improved in proportion to the increase of tooth brushing time(p<0.05). The ultra-sonic minuteness vibration and semi rotation type was superior to toothbrush of vibration type comparing to the removal rate of plaque on the tooth(p<0.05). Conclusions : The electric toothbrush of supersonic minuteness vibration and semi rotation type can be recommended most of tooth types regardless of oral tooth setting status for example, normal set of tooth, crowding tooth, bracket attached tooth, porcelain tooth.

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

Development of Crack Detecting Method at Steam Turbine Blade Root Finger using Ultrasonic Test (초음파탐상 검사를 이용한 증기터빈 블레이드 루트 휭거 균열 탐지기법 개발)

  • Yun, Wan-No;Kim, Jun-Sung;Kang, Myung-Soo;Kim, Duk-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.738-744
    • /
    • 2011
  • The reliability of blade root fixing section is required to endure the centrifugal force and vibration stress for the last stage blade of steam turbine in thermal power plant. Most of the domestic steam turbine last stage blades have finger type roots. The finger type blade is very complex, so the inspection had been performed only on the exposed fixing pin cross-section area due to the difficulty of inspection. But the centrifugal force and vibration stress are also applied at the blade root finger and the crack generates, so the inspection method for finger section is necessary. For the inspection of root finger, inspection points were decided by simulating ultra-sonic path with 3D modeling, curve-shape probe and fixing jig were invented, and the characteristics analysis method of ultrasonic reflection signal and defect signal disposition method were invented. This invented method was actually executed at site and prevented the blade liberation failure by detecting the cracks at the fingers. Also, the same type blades of the other turbines were inspected periodically and the reliability of the turbine increased.

Prediction of The MOR of Larch Lumber (낙엽송 소경각재의 휨 파괴계수 예측)

  • Lee, In-Hwan;Cho, Soo-min;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.93-99
    • /
    • 2018
  • It is necessary to review the non-destructive indexes in order to estimate the bending strength performance of the domestic larch lumber. In this study, MOEs (modulus of elastic) the larch lumber (cross-section $89{\times}120mm$) were evaluated through non-destructive methods such as the ultra-sonic method, longitudinal vibration method, and non-destructive bending method. The non-destructive measurement method which best represented the static MOE was determined and applied as the MOR(modulus of rupture) estimation index. The MOE that was measured through the longitudinal vibration method showed the highest correlation with the static MOE. The MOR was highly related to the static MOE. Therefore, the non-destruction MOE measured through the longitudinal vibration method was used to estimate the MOR of the lumber.

A High power and Precision Ultrasonic Linear Motor with Multi-support Mechanism (다점 지지 고출력 고정도 초음파 모터)

  • Lee S.K.;Yun C.H.;Lee J.Y.;Cha H.R.;Kim W.K.;Kang J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.151-152
    • /
    • 2006
  • Nowadays, great attention has been shown to the question of ultrasonic linear motor for accomplishing the high positioning accuracy and high driving force in the semiconductor and optical industry. Ultrasonic linear motors have many advantages such as simple structure, quick response, ability to maintain position without energy consumption, and electromagnetic effect. And BLT has attracted attention to accomplish large vibration amplitude and large mechanical force. Authors designed and developed the new type of ultra sonic linear motor with multi support mechanism, achieved 75N of output force and 0.45m/s of velocity.

  • PDF

The Effect of Ultrasonic Vibration on Heat Transfer Augmentation of Forced Convective Flow in Circular Pipes (초음파 진동이 관내 강제대류 유동의 열전달 증진에 미치는 영향)

  • Jeong Ji Hwan
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.275-280
    • /
    • 2004
  • Augmentation of heat transfer by ultrasonic vibration in pipes are investigated. Measurements of convective heat transfer coefficients on circular pipe walls are made with and without ultrasonic vibration applied to water. These data are compared with each other to quantify the effects of ultrasonic vibration on heat transfer enhancement. Numerical analysis has been also performed in order to extend the ranges of examined temperature and flow rate. FLUENT Ver.6.1 is used to simulate velocity and temperature fields and evaluate heat transfer coefficient with and without ultrasonic vibration. The results show that the ultra- sonic vibration enhances the Nusselt number of forced convection flow and the increase rate strongly depends on flow rate.

In Vitro Study on the Artificial Plaque Removal Effect by Use of 360 Degree Rotating Head with Sonic Tooth-Brush

  • Lim, Jee-Hyun;Kim, Jin-Sil;Choi, Hwa-Young
    • International Journal of Clinical Preventive Dentistry
    • /
    • v.14 no.4
    • /
    • pp.228-234
    • /
    • 2018
  • Objective: The authors have experimented for the artificial plaque removal effect of several kinds of 360 degree rotating head typed tooth-brushes with sonic vibratory actioned by using of automatic machine for horizontal scrub method in order to find the better toothbrush type for plaque removal. Methods: The experiment was conducted on three medium to 360 degree rotating head toothbrushes, a medium sized toothbrush and a medium sized toothbrush, and a flat toothbrush consisting of 30 ordinary toothbrushes. A brushing machine with horizontal scrubbing was manufactured and had variations of the end of the bristle attached to or near the surface of the teeth, a vibrating wave action force of 16,000 or 18,000 cycles per minute, and a working time of 2 or 3 minutes. The tooth removal effect was confirmed by scanning and analyzing images with a computer program after automatic brushing with the machine. The elimination rate results for each group were analyzed using the independent t-test and one-way ANOVA test. Results: It revealed the most in removal effect for the artificial plaque in such conditions as action at near the tooth surface with 18,000 cycle for 3 minutes in case of using A, B, and C tooth-brush. And it has more removal effect rate than for using the plane tooth-brush (p<0.05). Conclusion: It was recommended to develop the 360 degree rotating head and vibratory toothbrush focusing to use near the tooth surface with 18,000 cycles of vibration for 3 minutes at one site of the teeth area.

Rotor High-Speed Noise Prediction with a Combined CFD-Kirchhoff Method (CFD와 Kirchhoff 방법의 결합을 이용한 로터의 고속 충격소음 해석)

  • 이수갑;윤태석
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.607-616
    • /
    • 1996
  • A combined computational fluid dynamics(CFD)-Kirchhoff method is presented for predicting high-speed impulsive noise generated by a hovering blade. Two types of Kirchhoff integral formula are used; one for the classical linear Kirchhoff formulation and the other for the nonlinear Kirchhoff formulation. An Euler finite difference solver is solved first to obtain the flow field close to the blade, and then this flow field is used as an input to a Kirchhoff formulation to predict the acoustic far-field. These formulas are used at Mach numbers of 0.90 and 0.95 to investigate the effectiveness of the linear and nonlinear Kirchhoff formulas for delocalized flow. During these calculiations, the retarded time equation is also carefully examined, in particular, for the cases of the control surface located outside of the sonic cylinder, where multiple roots are obtained. Predicted results of acoustic far-field pressure with the linear Kirchhoff formulation agree well with experimental data when the control surface is at the certain location(R=1.46), but the correlation is getting worse before or after this specific location of the control surface due to the delocalized nonlinear aerodynamic flow field. Calculations based on the nonlinear Kirchhoff equation using a linear sonic cylinder as a control surface show a reasonable agreement with experimental data in negative amplitudes for both tip Mach numbers of 0.90 and 0.95, except some computational integration problems over a shock. This concliudes that a nonlinear formulation is necessary if the control surface is close to the blade and the flow is delocalized.

  • PDF

Effects of Blasting Vibrations of Physical Properties of Curing Concrete (발파진동이 양생 콘크리트의 물성에 미치는 영향)

  • Jeong, Dong Ho
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.1
    • /
    • pp.81-87
    • /
    • 1999
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unrealistic and costly blasting vibration constraints have been placed on blasting when it occurs in the vicinity of curing concrete. To study the effects of blasting, concrete blocks of $30\times20\times20cm$ were molded and placed on the quarry Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0, and 10cm/sec. The impulses of blasting vibrations were applied at thirty minutes intervals . Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows : 1) The blasting vibrations between 6 and 8 hours after pour generally have exerted bad influences on the uniaxial compressive strength of the concrete 2) Under low vibration of 0.25cm/sec variations of the uniaxial compressive strength were not shown. As the magnitudes of blasting vibration increased, compressive strength of concrete decreased. But under the vibrations between 5 and 10cm/sec decreases in strength were almost same. 3) Physical properties of the p-wave velocity, Young's modulus, and Poisson's ratio appeared to decrease for the concrete blocks subjected to vibration for 6 to 8 hours.

  • PDF