• Title/Summary/Keyword: somatic mutations

Search Result 92, Processing Time 0.027 seconds

Relationships between LET and RBE of lonizing Radiation in the induction of Somatic Mutations of Drosophila melanogaster

  • 유미애;정운혁;이원호
    • Environmental Mutagens and Carcinogens
    • /
    • v.7 no.2
    • /
    • pp.103-111
    • /
    • 1987
  • The effects of LET (linear energy transfer) of radiation on the induction of somatic chromosome mutations or gene mutations of Drosophila melanogaster were studied. For detecting somatic chromosome mutations and gene mutations, Drosophila wing spot system and eye-color spot system were used, respectively. The frequencies of somatic chromosome mutations or gene mutations induced after third instar larval treatment with 23 MeV neutrons, thermal neutrons, X-rays were examined. From these data, the RBE(relative biological effectiveness) values of 23 MeV neutrons relative to X-rays for induction of somatic chromosome mutations or gene mutations were calculated. The present results suggest that high LET radiations are efficient than X-ray in producing not only somatic chromosome mutations but also gene mutations.

  • PDF

Brain Somatic Mutations in Epileptic Disorders

  • Koh, Hyun Yong;Lee, Jeong Ho
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.881-888
    • /
    • 2018
  • During the cortical development, cells in the brain acquire somatic mutations that can be implicated in various neurodevelopmental disorders. There is increasing evidence that brain somatic mutations lead to sporadic form of epileptic disorders with previously unknown etiology. In particular, malformation of cortical developments (MCD), ganglioglioma (GG) associated with intractable epilepsy and non-lesional focal epilepsy (NLFE) are known to be attributable to brain somatic mutations in mTOR pathway genes and others. In order to identify such somatic mutations presenting as low-level in epileptic brain tissues, the mutated cells should be enriched and sequenced with high-depth coverage. Nevertheless, there are a lot of technical limitations to accurately detect low-level of somatic mutations. Also, it is important to validate whether identified somatic mutations are truly causative for epileptic seizures or not. Furthermore, it will be necessary to understand the molecular mechanism of how brain somatic mutations disturb neuronal circuitry since epilepsy is a typical example of neural network disorder. In this review, we overview current genetic techniques and experimental tools in neuroscience that can address the existence and significance of brain somatic mutations in epileptic disorders as well as their effect on neuronal circuitry.

Somatic Mutations from Whole Exome Sequencing Analysis of the Patients with Biliary Tract Cancer

  • Yoon, Kyong-Ah;Woo, Sang Myung;Kim, Yun-Hee;Kong, Sun-Young;Han, Sung-Sik;Park, Sang-Jae;Lee, Woo Jin
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.35.1-35.3
    • /
    • 2018
  • Biliary tract cancer (BTC) is a rare cancer and is associated with a poor prognosis. To understand the genetic characteristics of BTC, we analyzed whole-exome sequencing data and identified somatic mutations in patients with BTC. Tumors and matched blood or normal samples were obtained from seven patients with cholangiocarcinoma who underwent surgical resection. We discovered inactivating mutations of tumor suppressor genes, including APC, TP53, and ARID1A, in three patients. Activating mutations of KRAS and NRAS were also identified. Our analyses identified somatic mutations in Korean patients with BTC.

Hypersensitivity of Somatic Mutations and Mitotic Recombinations Induced by Mutagens in Transgenic Drosophila bearing Rat DNA Polymerase $\beta$ (Rat의 DNA Polymerase$\beta$ cDNA가 도입된 Transgenic Drosophila의 체세포 돌연변이 유발에 관한 연구)

  • 최영현;유미애;이원호
    • Environmental Mutagens and Carcinogens
    • /
    • v.15 no.2
    • /
    • pp.100-105
    • /
    • 1995
  • The effects of DNA polymerase $\beta$ on the somatic chromosome mutations and mitotic recombinations were investigated using the transgenic Drosophila beating chimetic gene consisting of a promoter region of Drosophila actin 5C gene and rat DNA polymerase $\beta$. For detecting the somatic chromosome mutations and mitotic recombinations, the heterozygous (mwh/+) strains possessing or lacking transgene poi 13 were used. The spontaneous frequency of small mwh spots, due to deletion or nondisjunction etc., in the non-transgenic w strain and the transgenic p[pol $\beta$]-130 strain was 0.351 and 0.606, respectively. The spontaneous frequency (0.063) of large mwh spots, arises mostly from somatic recombination between the centromere and the locus mwh, in the transgenic p[pol $\beta$]-130 strain was about three times higher than that (0.021) of the non-transgenic w strain. The mutant clone frequencies of small and large mwh spots induced by N-methyl-N'-nitro-N-nitrosoguanidine and ethyl methanesulfonate in the transformant p[pol $\beta$]-130 were higher than those in the host strain w. The present results suggest that rat DNA polymerase $\beta$ participate at least in the somatic chromosome mutations and mitotic recombination processes.

  • PDF

Brain somatic mutations in MTOR leading to focal cortical dysplasia

  • Lim, Jae Seok;Lee, Jeong Ho
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.71-72
    • /
    • 2016
  • Focal cortical dysplasia type II (FCDII) is a focal malformation of the developing cerebral cortex and the major cause of intractable epilepsy. However, since the molecular genetic etiology of FCD has remained enigmatic, the effective therapeutic target for this condition has remained poorly understood. Our recent study on FCD utilizing various deep sequencing platforms identified somatic mutations in MTOR (existing as low as 1% allelic frequency) only in the affected brain tissues. We observed that these mutations induced hyperactivation of the mTOR kinase. In addition, focal cortical expression of mutant MTOR using in utero electroporation in mice, recapitulated the neuropathological features of FCDII, such as migration defect, cytomegalic neuron and spontaneous seizures. Furthermore, seizures and dysmorphic neurons were rescued by the administration of mTOR inhibitor, rapamycin. This study provides the first evidence that brain somatic activating mutations in MTOR cause FCD, and suggests the potential drug target for intractable epilepsy in FCD patients.

Effects of Somatic Mutations Are Associated with SNP in the Progression of Individual Acute Myeloid Leukemia Patient: The Two-Hit Theory Explains Inherited Predisposition to Pathogenesis

  • Park, Soyoung;Koh, Youngil;Yoon, Sung-Soo
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.34-37
    • /
    • 2013
  • This study evaluated the effects of somatic mutations and single nucleotide polymorphisms (SNPs) on disease progression and tried to verify the two-hit theory in cancer pathogenesis. To address this issue, SNP analysis was performed using the UCSC hg19 program in 10 acute myeloid leukemia patients (samples, G1 to G10), and somatic mutations were identified in the same tumor sample using SomaticSniper and VarScan2. SNPs in KRAS were detected in 4 out of 10 different individuals, and those of DNMT3A were detected in 5 of the same patient cohort. In 2 patients, both KRAS and DNMT3A were detected simultaneously. A somatic mutation in IDH2 was detected in these 2 patients. One of the patients had an additional mutation in FLT3, while the other patient had an NPM1 mutation. The patient with an FLT3 mutation relapsed shortly after attaining remission, while the other patient with the NPM1 mutation did not suffer a relapse. Our results indicate that SNPs with additional somatic mutations affect the prognosis of AML.

New Lung Cancer Panel for High-Throughput Targeted Resequencing

  • Kim, Eun-Hye;Lee, Sunghoon;Park, Jongsun;Lee, Kyusang;Bhak, Jong;Kim, Byung Chul
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.50-57
    • /
    • 2014
  • We present a new next-generation sequencing-based method to identify somatic mutations of lung cancer. It is a comprehensive mutation profiling protocol to detect somatic mutations in 30 genes found frequently in lung adenocarcinoma. The total length of the target regions is 107 kb, and a capture assay was designed to cover 99% of it. This method exhibited about 97% mean coverage at $30{\times}$ sequencing depth and 42% average specificity when sequencing of more than 3.25 Gb was carried out for the normal sample. We discovered 513 variations from targeted exome sequencing of lung cancer cells, which is 3.9-fold higher than in the normal sample. The variations in cancer cells included previously reported somatic mutations in the COSMIC database, such as variations in TP53, KRAS, and STK11 of sample H-23 and in EGFR of sample H-1650, especially with more than $1,000{\times}$ coverage. Among the somatic mutations, up to 91% of single nucleotide polymorphisms from the two cancer samples were validated by DNA microarray-based genotyping. Our results demonstrated the feasibility of high-throughput mutation profiling with lung adenocarcinoma samples, and the profiling method can be used as a robust and effective protocol for somatic variant screening.

Mechanistic Target of Rapamycin Pathway in Epileptic Disorders

  • Kim, Jang Keun;Lee, Jeong Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.272-287
    • /
    • 2019
  • The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.

PNA-mediated Real-Time PCR Clamping for Detection of EGFR Mutations

  • Choi, Jae-Jin;Cho, Min-Hey;Oh, Mi-Ae;Kim, Hyun-Sun;Kil, Min-Seock;Park, Hee-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3525-3529
    • /
    • 2010
  • Tyrosine kinase inhibitors (TKIs) are currently used in the treatment of patients with advanced lung cancer. Recent studies on non-small cell lung cancer have shown that some patients carry somatic mutations in the epidermal growth factor receptor (EGFR) gene. Such mutations correlate with the effectiveness of certain TKIs. To detect a small amount of mutant EGFR among an abundance of wild-type EGFR, we have developed a highly sensitive and simple method using PNA-mediated real-time PCR clamping. The PNA-mediated real-time PCR clamping enables detection of EGFR mutants down to approximately 1% mutant -to- wild type. The total assay time was short as it required only 2.0 hr. Thus, PNA-mediated real-time PCR clamping can easily be applied to clinical samples for identification of DNA carrying EGFR mutations and also appear to be the best assay to detect somatic mutations.

Germinal Center-independent Affinity Maturation in Tumor Necrosis Factor Receptor 1-deficient Mice

  • Kim, Jin-Ho;Kim, Ju;Jang, Yong-Suk;Chung, Gook-Hyun
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.586-594
    • /
    • 2006
  • Germinal centers (GCs) have been identified as site at which the somatic mutation of immunoglobulins occurs. However, somatic mutations in immunoglobulins have also been observed in animals that normally do not harbor germinal centers. This clearly indicates that somatic mutations can occur in the absence of germinal centers. We therefore attempted to determine whether or not GCs exist in TNFR1-deficient mice, and are essential for the somatic mutation of immunoglobulins, using (4-hydroxy-3-nitropheny)acetyl-ovalbumin (NP-OVA). Both wild-type and TNFR1-deficient mice were immunized with NPOVA, and then examined with regard to the existence of GCs. No typical B-cell follicles were detected in the TNFR1-deficient mice. Cell proliferation was detected throughout all splenic tissue types, and no in vivo immune-complex retention was observed in the TNFR1-deficient mice. All of these data strongly suggest that no GCs were formed in the TNFR1-deficient mice. Although TNFR1-deficient mice are unable to form GCs, serological analyses indicated that affinity maturation had been achieved in both the wild-type and TNFR1-deficient mice. We therefore isolated and sequenced several DNA clones from wild-type and the TNFR1-deficient mice. Eight out of 12 wild-type clones, and 11 out of 14 clones of the TNFR-1-deficient mice contained mutations at the CDR1 site. Thus, the wild-type and TNFR1-deficient mice were not extremely different with regard to types and rates of somatic mutation. Also, high-affinity antibodies were detected in both types of mice. Collectively, our data appear to show that affinity maturation may occur in TNFR1-deficient mice, which completely lack GCs.