DOI QR코드

DOI QR Code

Brain Somatic Mutations in Epileptic Disorders

  • Koh, Hyun Yong (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Jeong Ho (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2018.06.06
  • Accepted : 2018.08.22
  • Published : 2018.10.31

Abstract

During the cortical development, cells in the brain acquire somatic mutations that can be implicated in various neurodevelopmental disorders. There is increasing evidence that brain somatic mutations lead to sporadic form of epileptic disorders with previously unknown etiology. In particular, malformation of cortical developments (MCD), ganglioglioma (GG) associated with intractable epilepsy and non-lesional focal epilepsy (NLFE) are known to be attributable to brain somatic mutations in mTOR pathway genes and others. In order to identify such somatic mutations presenting as low-level in epileptic brain tissues, the mutated cells should be enriched and sequenced with high-depth coverage. Nevertheless, there are a lot of technical limitations to accurately detect low-level of somatic mutations. Also, it is important to validate whether identified somatic mutations are truly causative for epileptic seizures or not. Furthermore, it will be necessary to understand the molecular mechanism of how brain somatic mutations disturb neuronal circuitry since epilepsy is a typical example of neural network disorder. In this review, we overview current genetic techniques and experimental tools in neuroscience that can address the existence and significance of brain somatic mutations in epileptic disorders as well as their effect on neuronal circuitry.

Keywords

References

  1. Alcantara, D., Timms, A.E., Gripp, K., Baker, L., Park, K., Collins, S., Cheng, C., Stewart, F., Mehta, S.G., Saggar, A., et al. (2017). Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain 140, 2610-2622. https://doi.org/10.1093/brain/awx203
  2. Allen, A.S., Berkovic, S.F., Cossette, P., Delanty, N., Dlugos, D., Eichler, E.E., Epstein M.P., Glauser, T., Goldstein, D.B., Han, Y., et al. (2013). De novo mutations in epileptic encephalopathies. Nature 501, 217-221. https://doi.org/10.1038/nature12439
  3. Bae, T., Tomasini, L., Mariani, J., Zhou, B., Roychowdhury, T., Franjic, D., Pletikos, M., Pattni, R., Chen, B.J., Venturini, E., et al. (2018). Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550-555. https://doi.org/10.1126/science.aan8690
  4. Bargmann, C.I., and Marder, E. (2013). From the connectome to brain function. Nat. Methods 10, 483-490. https://doi.org/10.1038/nmeth.2451
  5. Barkovich, A.J., Kuzniecky, R.I., Dobyns, W.B., Jackson, G.D., Becker, L.E., and Evrard, P. (1996). A classification scheme for malformations of cortical development. Neuropediatrics 27, 59-63. https://doi.org/10.1055/s-2007-973750
  6. Bassett, D.S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20, 353-364. https://doi.org/10.1038/nn.4502
  7. Blumcke, I., Aronica, E., Becker, A., Capper, D., Coras, R., Honavar, M., Jacques, T.S., Kobow, K., Miyata, H., Muhlebner, A., et al. (2016). Low-grade epilepsy-associated neuroepithelial tumours - the 2016 WHO classification. Nat. Rev. Neurol. 12, 732-740. https://doi.org/10.1038/nrneurol.2016.173
  8. Briellmann, R.S., Torn-Broers, Y., and Berkovic, S.F. (2001). Idiopathic generalized epilepsies: do sporadic and familial cases differ? Epilepsia 42, 1399-1402.
  9. Chen, L., Liu, P., Evans, T.C., Jr., and Ettwiller, L.M. (2017). DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science 355, 752-756. doi:10.1126/science.aai8690
  10. Chin, L., Andersen, J.N., and Futreal, P.A. (2011). Cancer genomics: from discovery science to personalized medicine. Nat. Med. 17, 297-303. https://doi.org/10.1038/nm.2323
  11. Crawford, P.M., West, C.R., Chadwick, D.W., and Shaw, M.D. (1986). Arteriovenous malformations of the brain: natural history in unoperated patients. J. Neurol Neurosurg. Psychiatry 49, 1-10. https://doi.org/10.1136/jnnp.49.1.1
  12. Crino, P.B. (2009). Focal brain malformations: seizures, signaling, sequencing. Epilepsia 50 Suppl 9, 3-8.
  13. D'Gama, A.M., Geng, Y., Couto, J.A., Martin, B., Boyle, E.A., LaCoursiere, C.M., Hossain, A., Hatem, N.E., Barry, B.J., Kwiatkowski, D.J., et al. (2015). Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann. Neurol. 77, 720-725. https://doi.org/10.1002/ana.24357
  14. D'Gama, A.M., Woodworth, M.B., Hossain, A.A., Bizzotto, S., Hatem, N.E., LaCoursiere, C.M., Najm, I., Ying, Z., Yang, E., Barkovich, A.J., et al. (2017). Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep. 21, 3754-3766. https://doi.org/10.1016/j.celrep.2017.11.106
  15. DeFelipe, J. (2010). From the connectome to the synaptome: an epic love story. Science 330, 1198-1201. https://doi.org/10.1126/science.1193378
  16. Deisseroth, K. (2011). Optogenetics. Nat. Methods 8, 26-29. https://doi.org/10.1038/nmeth.f.324
  17. Evrony, G.D., Cai, X., Lee, E., Hills, L.B., Elhosary, P.C., Lehmann, H.S., Parker, J.J., Atabay, K.D., Gilmore, E.C., Poduri, A., et al. (2012). Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483-496. https://doi.org/10.1016/j.cell.2012.09.035
  18. Ferrea, E., Maccione, A., Medrihan, L., Nieus, T., Ghezzi, D., Baldelli, P., Benfenati F., and Berdondini, L. (2012). Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circuits 6, 80.
  19. Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R. (2017). Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471. https://doi.org/10.1038/nature24644
  20. Grabiner, B.C., Nardi, V., Birsoy, K., Possemato, R., Shen, K., Sinha, S., Jordan, A., Beck, A.H., and Sabatini, D.M. (2014). A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 4, 554-563. https://doi.org/10.1158/2159-8290.CD-13-0929
  21. Hildebrand, M.S., Dahl, H.H., Damiano, J.A., Smith, R.J., Scheffer, I.E., and Berkovic, S.F. (2013). Recent advances in the molecular genetics of epilepsy. J. Med. Genet. 50, 271-279. https://doi.org/10.1136/jmedgenet-2012-101448
  22. Insel, T.R. (2014). Brain somatic mutations: the dark matter of psychiatric genetics? Mol. Psychiatry 19, 156-158. https://doi.org/10.1038/mp.2013.168
  23. Jamuar, S.S., Lam, A.T., Kircher, M., D'Gama, A.M., Wang, J., Barry, B.J., Zhang, X, Hill, R.S., Partlow, J.N., Rozzo, A., et al. (2014). Somatic mutations in cerebral cortical malformations. N. Engl. J. Med. 371, 733-743. https://doi.org/10.1056/NEJMoa1314432
  24. Jansen, L.A., Mirzaa, G.M., Ishak, G.E., O'Roak, B.J., Hiatt, J.B., Roden, W.H., Gunter, S.A., Christian, S.L., Collins, S., Adams, C., et al. (2015). PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain, 138(Pt 6), 1613-1628. https://doi.org/10.1093/brain/awv045
  25. Katzel, D., Nicholson, E., Schorge, S., Walker, M.C., and Kullmann, D.M. (2014). Chemical-genetic attenuation of focal neocortical seizures. Nat Commun, 5, 3847. https://doi.org/10.1038/ncomms4847
  26. Kim, J., Kim, D., Lim, J.S., Maeng, J.H., Son, H., Kang, H.-C., Nam, H., Lee, J.H., and Kim, S. (2017). Accurate detection of low-level somatic mutations with technical replication for next-generation sequencing. bioRxiv. doi: https://doi.org/10.1101/179713.
  27. Koh, H.Y., Kim, S.H., Jang, J., Kim, H., Han, S., Lim, J.S., Son, G., Choi, J., Park, B.O., Do Heo, W., et al. (2018). BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. Nat. Med.
  28. Krook-Magnuson, E., Armstrong, C., Oijala, M., and Soltesz, I. (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376. https://doi.org/10.1038/ncomms2376
  29. Lee, J.H. (2016). Somatic mutations in disorders with disrupted brain connectivity. Exp. Mol. Med. 48, e239. https://doi.org/10.1038/emm.2016.53
  30. Lee, J.H., Huynh, M., Silhavy, J.L., Kim, S., Dixon-Salazar, T., Heiberg, A., Scott, E., Bafna, V., Hill, K.J., Collazo, A., et al. (2012). De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941-945. https://doi.org/10.1038/ng.2329
  31. Leventer, R.J., Scerri, T., Marsh, A.P., Pope, K., Gillies, G., Maixner, W., MacGregor, D., Harvey, A.S., Delatycki, M.B., Amor, D.J., et al. (2015). Hemispheric cortical dysplasia secondary to a mosaic somatic mutation in MTOR. Neurology 84, 2029-2032. https://doi.org/10.1212/WNL.0000000000001594
  32. Lim, E.T., Uddin, M., De Rubeis, S., Chan, Y., Kamumbu, A.S., Zhang, X., D'Gama, A.M., Kim, S,N., Hill, R.S., Goldberg, A.P., et al. (2017). Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci. 20, 1217-1224. https://doi.org/10.1038/nn.4598
  33. Lim, J.S., Gopalappa, R., Kim, S.H., Ramakrishna, S., Lee, M., Kim, W.I., Kim, J., Park, S.M., Lee, J., Oh, J.H., Kim, H.D. (2017). Somatic Mutations in TSC1 and TSC2 Cause Focal Cortical Dysplasia. Am. J. Hum. Genet. 100, 454-472. https://doi.org/10.1016/j.ajhg.2017.01.030
  34. Lim, J.S., Kim, W.I., Kang, H.C., Kim, S.H., Park, A.H., Park, E.K., Cho, Y.W., Kim, S., Kim, H.M., Kim, J.A., et al. (2015). Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395-400. https://doi.org/10.1038/nm.3824
  35. Lodato, M.A., Rodin, R.E., Bohrson, C.L., Coulter, M.E., Barton, A.R., Kwon, M., Sherman, M.A., Vitzthum, C.M., Luquette, L.J., Yandava, C.N., et al. (2018). Aging and neurodegeneration are associated with increased mutations in single human neurons. Science, 359, 555-559. https://doi.org/10.1126/science.aao4426
  36. Loscher, W. (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 20(5), 359-368. https://doi.org/10.1016/j.seizure.2011.01.003
  37. Loscher, W., Klitgaard, H., Twyman, R.E., and Schmidt, D. (2013). New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov. 12(10), 757-776. https://doi.org/10.1038/nrd4126
  38. McConnell, M.J., Moran, J.V., Abyzov, A., Akbarian, S., Bae, T., Cortes-Ciriano, I., Erwin, J.A., Fasching, L., Flasch, D.A., Freed, D., et al. (2017). Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 356,
  39. Mirzaa, G.M., Campbell, C.D., Solovieff, N., Goold, C., Jansen, L.A., Menon, S., Timms, A.E., Conti, V., Biag, J.D., Adams, C., et al. (2016). Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. 73, 836-845. https://doi.org/10.1001/jamaneurol.2016.0363
  40. Moller, R.S., Weckhuysen, S., Chipaux, M., Marsan, E., Taly, V., Bebin, E.M., Hiatt S.M., Prokop, J.W., Bowling, K.M., Mei, D., et al. (2016). Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol Genet. 2, e118. https://doi.org/10.1212/NXG.0000000000000118
  41. Myers, C.T., and Mefford, H.C. (2015). Advancing epilepsy genetics in the genomic era. Genome Med. 7, 91. https://doi.org/10.1186/s13073-015-0214-7
  42. Nakashima, M., Miyajima, M., Sugano, H., Iimura, Y., Kato, M., Tsurusaki, Y., Miyake, N., Saitsu, H., Arai, H., and Matsumoto, N. (2014). The somatic GNAQ mutation c.548G>A (p.R183Q) is consistently found in Sturge-Weber syndrome. J. Hum. Genet. 59, 691-693. https://doi.org/10.1038/jhg.2014.95
  43. Nakashima, M., Saitsu, H., Takei, N., Tohyama, J., Kato, M., Kitaura, H., Shiina, M., Shirozu, H., Masuda, H., Watanabe, K., et al. (2015). Somatic Mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann. Neurol. 78, 375-386. https://doi.org/10.1002/ana.24444
  44. Nikolaev, S.I., Vetiska, S., Bonilla, X., Boudreau, E., Jauhiainen, S., Rezai Jahromi, B., Khyzha, N., DiStefano, P.V., Suutarinen, S., Kiehl, T.R., et al. (2018). Somatic activating KRAS mutations in arteriovenous malformations of the brain. N. Engl. J. Med. 378, 250-261. https://doi.org/10.1056/NEJMoa1709449
  45. Perry, M.S., and Duchowny, M. (2013). Surgical versus medical treatment for refractory epilepsy: outcomes beyond seizure control. Epilepsia 54, 2060-2070. https://doi.org/10.1111/epi.12427
  46. Pinault, D. (2003). Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5-9 Hz oscillations. J. Physiol. 552(Pt 3), 881-905. https://doi.org/10.1113/jphysiol.2003.046573
  47. Poduri, A., Evrony, G.D., Cai, X., Elhosary, P.C., Beroukhim, R., Lehtinen, M.K., Hills, L.B., Heinzen, E.L., Hill, A., Hill, R.S., et al. (2012). Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41-48. https://doi.org/10.1016/j.neuron.2012.03.010
  48. Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A., Swerdlow, H.P., and Gu, Y. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341. https://doi.org/10.1186/1471-2164-13-341
  49. Ribierre, T., Deleuze, C., Bacq, A., Baldassari, S., Marsan, E., Chipaux, M., Muraca G., Roussel, D., Navarro, V., Leguern, E., et al. (2018). Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J. Clin. Invest. 128, 2452-2458. https://doi.org/10.1172/JCI99384
  50. Roth, B.L. (2016). DREADDs for Neuroscientists. Neuron 89, 683-694. https://doi.org/10.1016/j.neuron.2016.01.040
  51. Schindler, G., Capper, D., Meyer, J., Janzarik, W., Omran, H., Herold-Mende, C., Schmieder, K., Wesseling, P., Mawrin, C., Hasselblatt, M., et al. (2011). Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 121, 397-405. https://doi.org/10.1007/s00401-011-0802-6
  52. Schirmer, M., Ijaz, U.Z., D'Amore, R., Hall, N., Sloan, W.T., and Quince, C. (2015). Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43, e37. https://doi.org/10.1093/nar/gku1341
  53. Shinmyo, Y., and Kawasaki, H. (2017). CRISPR/Cas9-Mediated Gene Knockout in the Mouse Brain Using In Utero Electroporation. Curr. Protoc. Neurosci 79, 3. 32.1-3.32.11.
  54. Shirley, M.D., Tang, H., Gallione, C.J., Baugher, J.D., Frelin, L.P., Cohen, B., North, P.E., Marchuk, D.A., Comi, A.M., and Pevsner, J. (2013). Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl. J. Med. 368, 1971-1979. https://doi.org/10.1056/NEJMoa1213507
  55. Singh, A., and Trevick, S. (2016). The Epidemiology of Global Epilepsy. Neurol. Clin. 34, 837-847. https://doi.org/10.1016/j.ncl.2016.06.015
  56. Stead, L.F., Sutton, K.M., Taylor, G.R., Quirke, P., and Rabbitts, P. (2013). Accurately identifying low-allelic fraction variants in single samples with next-generation sequencing: applications in tumor subclone resolution. Hum. Mutat. 34, 1432-1438. https://doi.org/10.1002/humu.22365
  57. Tezer, F.I., Akalan, N., Oguz, K.K., Karabulut, E., Dericioglu, N., Ciger, A., and Saygi, S. (2008). Predictive factors for postoperative outcome in temporal lobe epilepsy according to two different classifications. Seizure 17, 549-560. https://doi.org/10.1016/j.seizure.2008.02.003
  58. Tian, G.F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X., Zielke, H.R., et al. (2005). An astrocytic basis of epilepsy. Nat. Med. 11, 973-981. https://doi.org/10.1038/nm1277
  59. Winawer, M.R., Griffin, N.G., Samanamud, J., Baugh, E.H., Rathakrishnan, D., Ramalingam, S., Zagzag, D., Schevon, C.A., Dugan, P., Hegde, M., et al. (2018). Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann. Neurol. 83, 1133-1146. https://doi.org/10.1002/ana.25243
  60. Xu, H., DiCarlo, J., Satya, R.V., Peng, Q., and Wang, Y. (2014). Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genomics 15, 244. https://doi.org/10.1186/1471-2164-15-244
  61. Xu, J., Pham, C.G., Albanese, S.K., Dong, Y., Oyama, T., Lee, C.H., Rodrik-Outmezguine, V., Yao, J., Han, S., Chen, D., et al. (2016). Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. J. Clin. Invest. 126, 3526-3540. https://doi.org/10.1172/JCI86120

Cited by

  1. Playing the genome card vol.34, pp.1, 2020, https://doi.org/10.1080/01677063.2019.1706093
  2. Discovery of a Brain-Penetrant ATP-Competitive Inhibitor of the Mechanistic Target of Rapamycin (mTOR) for CNS Disorders vol.63, pp.3, 2018, https://doi.org/10.1021/acs.jmedchem.9b01398
  3. Von Hippel–Lindau tumor suppressor (VHL) stimulates TOR signaling by interacting with phosphoinositide 3-kinase (PI3K) vol.295, pp.8, 2018, https://doi.org/10.1074/jbc.ra119.011596
  4. Postnatal Role of the Cytoskeleton in Adult Epileptogenesis vol.1, pp.1, 2018, https://doi.org/10.1093/texcom/tgaa024
  5. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases vol.55, pp.1, 2018, https://doi.org/10.1134/s0026893321010155
  6. Landmarks of human embryonic development inscribed in somatic mutations vol.371, pp.6535, 2018, https://doi.org/10.1126/science.abe1544
  7. Detection of Brain Somatic Mutations in Cerebrospinal Fluid from Refractory Epilepsy Patients vol.89, pp.6, 2021, https://doi.org/10.1002/ana.26080
  8. Neuroimaging and genetic characteristics of malformation of cortical development due to mTOR pathway dysregulation: clues for the epileptogenic lesions and indications for epilepsy surgery vol.21, pp.11, 2018, https://doi.org/10.1080/14737175.2021.1906651
  9. Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies vol.21, pp.11, 2021, https://doi.org/10.1080/14737175.2021.1981288
  10. MIPP-Seq: ultra-sensitive rapid detection and validation of low-frequency mosaic mutations vol.14, pp.1, 2021, https://doi.org/10.1186/s12920-021-00893-3