• Title/Summary/Keyword: solvent recovery

Search Result 445, Processing Time 0.023 seconds

A Study on the High Purity Separation of Nitrocellulose from 175mm Ammunition Propellant (175mm 포탄추진제로부터 nitrocellulose의 고순도 분리에 관한 연구)

  • Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.290-295
    • /
    • 2015
  • The purpose of this study is to separate nitrocellulose from 175 mm ammunition propellant by environmentally responsible recovery method. Recovery of nitrocellulose from obsolete ammunition is much more desirable than destruction since it can be reused in the several purpose. In spite of durable demilitarization of obsolete ammunition, the current holding amount of obsolete ammunition is gradually increasing and accumulated. The existing demilitarization methods, such as incineration and priming are strictly restricted for the noise, dust, oscillation and air and soil pollution. This study is focused on the separation of nitrocellulose by environmentally responsible recovery method by the solubility difference of nitrocellulose in nonpolar solvent. The purity of an extracted nitrocellulose was analysed by IR and TLC method and was clarified as very high.

Comparison of Extraction Methods for the Analysis of Total Petroleum Hydrocarbons in Contaminated Soil (오염토양내 석유계 총탄화수소 분석을 위한 추출방법의 비교)

  • Eui-Young Hwang;Wan Namkoong;Jung-Young Choi
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.45-53
    • /
    • 2000
  • Two extraction methods for total petroleum hydrocarbon (TPH) from contaminated soil were evaluated. The soil used for this study was sandy loam. Diesel oil was selected as representative petroleum hydrocarbons and was spiked at 100, 10,000, 50,000mg TPH/kg dry soil. Percentage recovery of TPH by shaking method was higher compared to Soxhlet extraction. At extraction time of 2 hours and sample to solvent ratio of 1 : 5, the highest percentage recovery was obtained. In this condition, percentage recovery of TPH in soil contaminated with 100mg/kg and 50,000mg/kg as TPH was 95.9% and 95.5%, respectively The volume of solvent lost by volatilization in shaking method was relatively small compared to Soxhlet extraction.

  • PDF

Recycling of rayon industry effluent for the recovery and separation of Zn/Ca using Thiophosphinic extractant

  • Jha, M.K.;Kumar, V.;Bagchi, D.;Singh, R.J.;Lee, Jae-Chun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.78-85
    • /
    • 2006
  • In textile industries, waste effluent containing zinc is generated during the manufacture of rayon yarn from the wood pulp or cotton linters. Due to the strict environmental regulations and the presence of toxic metallic and other constituents, the discharge of industrial effluents in the sewage or disposal of solid sludge as landfill is restricted. Before recycling of zinc as zinc sulphate solution to the spinning-bath of the rayon manufacturing plant the zinc sulphate solution must be free from calcium, which is deleterious to the process as gypsum precipitates with the increase in concentration and forms scale in the bath. In the present work an attempt has been made to develop a process following solvent extraction technique using thiophosphinic extractants, Cyanex 272 and 302 modified with isodecanol and diluted in kerosene to recover zinc from rayon effluent. Various process parameters viz. extraction of zinc from different concentration of solution, distribution ratio, selective extraction, O/A ratio on extraction and stripping from the loaded organic, complex formation in the organic phase etc. have been studied to see the feasibility of the process. The extractant Cyanex 302 has been found selective for the recovery of 99.99% of zinc from the effluent above equilibrium pH 3.4 maintaining the O/A ratio of 1/30 leaving all the calcium in the raffinate. It selectively extracted zinc in the form of complex $[R_{2}Zn.3RH]_{org}$ and retained all the calcium in the aqueous raffinate. The zinc from the loaded Cyanex 302 can be stripped with 10% sulphuric acid at even O/A ratio of 10 without affecting the stripping efficiency. The stripped solution thus obtained could be recycled in the spinning bath of the rayon plant. The raffinate obtained after the recovery of zinc could be disposed safely without affacting environment.

  • PDF

Recovery of Acids and Valuable Metals from Stainless-Steel Pickling Acids (스텐레스 산세폐액으로부터 산 및 유가금속의 회수)

  • 김성규;이화영;오종기;이동휘
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • The process for recovery of acids and valuable metals such as nickel and chromium from the stainless-steel pickling acids has been developed vased on the use of solvent extraction technique. Until now, several processes for the treatment of waste acids were already developed in such countries as Japan, Swden and Canada. Those methods are, however, forcussed on the recovery of acids from them discarding the metals included in them as the hydroxides sludge. In the present work, the recovery of nickel and chromium in addition to nitric acid and hydrofluoric acid has been aimed so as to recycle them to the stainless-steel pickling lines and also to minimize the amount of sludge generated during the treatment of waste acids. The establishment of the process to recover the acids has been carried out based on the solvent extraction with TBP. The iron was eliminated from the waste solutions by precipitating in the form of hydroxide through the adjustment of pH with calcined limestone and the selective extration of chromium and nickel from the resultant solutions has been conducted by using D2EHPA as extractant.

  • PDF

Fundamental Study on Solvent Sublation Using Salphen and Its Application for Separative Determination of Trace Ni(II), Co(II) and Cu(II) in Water Samples

  • Kim, Young-Sang;In, Gyo;Kim, Mi-Hyun;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1757-1762
    • /
    • 2006
  • A solvent sublation using salphen as a ligand was studied and applied for the determination of trace Ni(II), Co(II) and Cu(II) in water samples. The fundamental study was investigated by a solvent extraction process because the solvent sublation was done by extracting the floated analytes into an organic solvent from the aqueous solution. The salphen complexes of Ni(II), Co(II) and Cu(II) ions were formed in an alkaline solution of more than pH 8 and then they were extracted into m-xylene. It was known that the each metallic ion formed 1 : 1 complex with the salphen and the logarithmic values of extraction constants for the complexes were 3.3 5.1 as an average value. Based on the preliminary study, the procedure was fixed for the separation and concentration of the analytes in samples. Various conditions such as the pH of solutions, the influence of $NaClO_4$, the bubbling rate and time of $N_2$ gas, and the type of organic solvent were optimized. The metal-salphen complexes could be extracted into m-xylene from the solution of more than pH 8, but the pH could be shifted to acidic solution of pH 6 by the addition of $NaClO_4$. In addition, the solvent sublation efficiency of the analytes was increased by adding $NaClO_4$. The recovery of 97-115% was obtained in the spiked samples in which given amounts of 0.3 mg/L Ni(II), 0.8 mg/L Co(II) and 0.04 mg/L Cu(II) were added.

Solvent-tolerant Lipases and Their Potential Uses (유기용매 내성 리파아제와 그 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1381-1392
    • /
    • 2017
  • This review described solvent-tolerant lipases and their potential industrial, biotechnological and environmental impacts. Although organic solvent-tolerant lipase was first reported in organic solvent-tolerant bacterium, many organic solvent-tolerant lipases are in not only solvent-tolerant bacteria but also solvent-intolerant bacterial and fungal strains, such as the well-known Bacillus, Pseudomonas, Streptomyces and Aspergillus strains. As these lipases are not easily inactivated in organic solvents, there is no need to immobilize them in order to prevent an enzyme inactivation by solvents. Therefore, the solvent-tolerant lipases have the potential to be used in many biotechnological and biotransformation processes. With the solvent-tolerant lipases, a large number insoluble substrates become soluble, various chemical reactions that are initially impossible in water systems become practical, synthesis reactions (instead of hydrolysis) are possible, side reactions caused by water are suppressed, and the possibility of chemoselective, regioselective and enantioselective transformations in solvent and non-aqueous systems is increased. Furthermore, the recovery and reuse of enzymes is possible without immobilization, and the stabilities of the lipases improve in solvent and non-aqueous systems. Therefore, lipases with organic-solvent tolerances have attracted much attention in regards to applying them as biocatalysts to biotransformation processes using solvent and non-aqueous systems.

Properties of Chopi Oleoresin Extracted with Various Solvents and Effects of Extraction Conditions on Volatile Components (초피 Oleoresin 제조시 용매에 따른 추출물특성과 추출조건에 따른 휘발성 성분 변화)

  • 최용희;허상선;배동호;김상욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.406-412
    • /
    • 1998
  • Such extraction conditions as the kinds of solvent, extracting temperature, extracting time, ratio of material to solvent and particle size of material, were studied to maximize the extraction of oleoresin from chipi. Larger amount of soluble solids were extracted from seeds with nonpolar solvents (hexane, pentane, ether) for extraction, because the seeds contained large amount of crude fats and monoterpene(limonene) volatile compounds. Larger amount of soluble solids were extracted from peel with polar solvents(methanol, ethanol) of extraction because of large amount of water soluble colors, sugars and oxygenated terpene bolatile compounds in the peel. The application of the solvents in intermediate polarity (dichloromethane, acetone) resulted in more effective extraction of soluble solid and volatile compounds. Expecially, dichloromethane was an excellent solvent in extraction of volatile compounds. In the concern of volatile compound recovery yield, the optimum extraction conditions, such as temperature, time, mixing ratio of material to dichloromethane and mean particle size, were $25^{\circ}C$, 10min, 1:10(w/v), 355~250${\mu}{\textrm}{m}$ for chopi peels and 3$0^{\circ}C$, 10min, 1:8(w/v), 355~250${\mu}{\textrm}{m}$ for chopi seeds, respectively.

  • PDF

A Study on the Recovery of Acetonitrile in the Process of Acrylonitrile (Acrylonitrile 제조공정에서 Acstonitrile의 회수에 관한 연구)

  • Lee, Jin-Woo;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1016-1023
    • /
    • 1994
  • In process of manufacturing acrylonitrile azeotrope of acetonitrile-water was come into being as by-product. For the purpose of recovering acetonitrile through solvent extraction process benzene, toluene, o-xylene, ethylacetate and monochlorobenzene as solvents were selected in order to separate acetonitrile from azeotrope of acetonitrile-water. In this study liquid-liquid equilibrium data were determined and consistency of the experimental data was investigated. The tie line and plait point for solvent(1)-water(2)-acetonitrile(3) system were determined at $25^{\circ}C$. The parameters in the NRTL, UNIQUAC and modified UNIQUAC model were predicted, distribution coefficient and selectivity of each solvent were determined respectively.

  • PDF

A Study on the Development of Analytical Method for Micro-Odorous Compounds in Water (흡착제를 이용한 수중의 미량 이취물질 분석법 개발에 관한 연구)

  • 김은호;성낙창;최용락
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.575-580
    • /
    • 1999
  • Even if odorous compounds remained very low concentration in water, it caused strong odor. Because Geosmin and most of odorous compound had very vaporization, those were difficult to analyze with GC/MSD and Purge & Trap. So, we needed pre-treatment method for decreasing amounts of extracting solvents, improving recovery efficiencies and increasing analytical efficiencies. This study developed efficient technology for analyzing odorous compounds, using various adsorbents and extracting solvents. The optimum adsorbent was XAD resins. Especially, XAD-2, XAD-7 and XAD-2010 were superior, but XAD-2 of these and MTBE was the optimum extraction solvent. Other extraction solvent's efficiency was in order of MTBE>Dichloromethane>n-Hexane>Diethylether. The optimum NaCl dosage for increasing efficiency was 5g in liquid-liquid extraction method. The shaking time(0∼24hr) had no concern with adsorption efficiency. The optimum adsorbent was XAD-2 resin and extraction solvent was MTBE. Dosing NaCl, adsorption efficiency was increased in liquid-liquid extraction method, but NaCl has no effect on liquid-solid extraction method. In this experimental results, this method will apply to not only Geosmin but other well-known odorous compounds (2-MIB, IBMP, IPMP, TCA) and algae toxins (Mycrocystin, Anatoxin etc)

  • PDF