• Title/Summary/Keyword: solvent evaporation

Search Result 270, Processing Time 0.029 seconds

Reactivation of Horseradish Peroxidase in Organic Media Using Solvent Evaporation (용매 증발에 의한 유기용매내 Horseradish peroxidase의 재생)

  • Choe, Yu-Seong;Yu, Yeong-Je
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.465-469
    • /
    • 1999
  • Horseradish peroxidase(HRP) in organic solvent can be reactivated by evaporation. In order to measure the evaporation effect, the enzyme solutions were obtained by evaporation and dilution of organic solvent, respectively. Although two situations were thermodynamically identical, the activity from evaporation was higher than that from dilution. From the UV absorbance and the fluorescence intensity mesurements, it can be explained that reactivation of enzyme activity might be caused by reversible folding, and the enzyme obtained by evaporation was more refolded than that obtained by dilution.

  • PDF

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

Effect of Solvent Mixture on the Properties of LTCC Slurry and Green Sheets (LTCC 슬러리 및 그린시트의 물성 변화에 미치는 혼합용매 조성의 영향)

  • Cho, Beom-Joon;Park, Eun-Tae
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.533-537
    • /
    • 2006
  • The effects of binary solvent mixtures with various ratios of toluene and ethanol on the properties of slurries and green sheets were investigated. Viscosity of slurry was changed by varying the ratio of solvent mixture which affected the solubility of binder. The relative solvency behavior of a solvent mixture could be predicted with the Hildebrand solubility parameter(${\delta}$) and hydrogen bonding index( ${\gamma}$). The minimum viscosity, the best dispersion of binder, was reached at the composition of toluene:ethanol=4:6, which corresponded to our forecast. The mechanical properties of green sheets related to evaporation of solvents were influenced by the composition of the solvent mixture. At the azeotrope the skin was formed on a drying cast during the drying process because of fast evaporation. At a range of concentrations over 50wt% toluene, green sheets could not be fully dried at low temperature due to excessive toluene. The mechanical properties of green sheets were excellent at the azeotrope-like composition of toluene:ethanol=4:6 which has a little excess of toluene over the azeotrope.

Studies on Dissolution of Fentiazac from ${\beta}-Cyclodextrin$ Inclusion Complex (${\beta}$-씨클로덱스트린 포접화합물로부터 펜티아작의 용출)

  • Yoon, Hyung-Joong;Back, Un-Bong;Seo, Seong-Hoon;Kim, Soo-Uck
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 1990
  • To increase the solubility of fentiazac which is used widely as a non-steroidal antiinflammatory drug, its inclusion complex and suppositories were prepared and studied. Inclusion complexes of fentiazac with ${\beta}-cyclodertin$ $({\beta}-CyD)$ were prepared by four diffrent methods; coprecipitation method, kneading method, solvent evaporation method, freeze drying method. Suppositories of $fentiazac/{\beta}-CyD$ with PEG 1500 and Witepsol H-15 were prepared by solvent evaporation method and freeze drying method. Inclusion complex formation of fentiazac with ${\beta}-CyD$ was ascertained by powder X-ray diffractometry, differential scanning calorimetry and IR spectroscopy. The dissolution rate of fentiazac from the inclusion complex increased in distilled water and KP 2nd disintegration test fluids (pH 6.8) but extemly decreased in KP 1st disintegration test fluid (pH 1.2). Inclusion complexes prepared by freeze drying method and solvent evaporation method were similar. Freeze drying method seemed to be suitable for preparation of complex with most higher dissolution rate but coprecipitation method seemed not to be suitable. The dissolution rate of fentiazac increased markedly by ${\beta}-CyD$ complexation. The release rates of suppositories increased in the following order. Complex prepared by freeze dying method in PEG 1500 > complex prepared by solvent evaporation method in PEG 1500 > fentiazac in PEG 1500 > complex prepared by freeze dying method in Witepsol H-15 > complex prepared by solvent evaporation method in Witepsol H-15 > fentiazac in Witepsol H-15.

  • PDF

Unstable Inverted Phases of Di- and Tri-block Copolymers on Solution-Casting Films

  • Sun Dachun;Huang Lei;Liang Haojun
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.152-155
    • /
    • 2005
  • A dynamic density functional theory is presented for the observation of the phase revolutions of a solution-casting film of di- and tri-block copolymers under solvent evaporation conditions. With the evaporation of the solvent, the inverted phases, the minor part of the component becomes the continuous phase at the higher solvent evaporation rate, as observed in this experiment. Further simulation revealed that these inverted phases are converted into the normal phase and the major part of the component becomes the continuous phase, implying that the inverted phases observed in this experiment are unstable.

A Numerical Study on Combined Solution and Evaporation during Spin Coating Process (Wafer Spin Coating 공정에서 증발과 용액이 박막 형성에 미치는 영향에 관한 연구)

  • 노영미;임익태;김광선
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 2003
  • The fluid flow, mass transfer, heat transfer and film thickness variation during the spin coating process are numerically studied. The model is said to be I-dimensional because radial variations in film thickness, concentration and temperature are ignored. The finite difference method is employed to solve the equations that are simplified using the similarity transformation. In early time, the film thinning is due to the radial convective outflow. However that slows during the first seconds of spinning so the film thinning due to evaporation of solvent becomes sole. The time varing film thickness is analyzed according to the wafer spin speed, the various solvent fraction in the coating liquid, and the various solvent vapor fraction in the bulk of the overlying gas during the spin coating is estimated.

  • PDF

Multiphase Modeling on the Convective Transport of an Organic Solvent through Unsaturated Soils (비포화 토양층 내 유기 용매의 이류 이동에 대한 다상 모델링)

  • Lee Kun Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2004
  • In-situ photolysis is one of the most promising ways to clean up a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). This study focuses on the mathematical description and model development of the convective upward transport of an organic solvent driven by evaporation and photodecomposition at the surface as the major transport mechanism in the clean up process. A finite-element-based numerical model was proposed to incorporate effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of van Genutchen equation for more accurate description of k-S-p relations. This paper presents results of extensive numerical calculations conducted to investigate the various parameters that play a role in the solvent migration through a laboratory-scale unsaturated soil column. The numerical results indicate that gravity affects significantly on the fluids distribution and evaporation for highly permeable soils. The soil texture has a profound influence on the fluid saturation profile during evaporation process. The amount of solvent convective motion increases with increasing evaporation rates and decreasing initial water saturation. Simulations conducted in this study have shown that the developed model is very useful in analyzing the effects of various parameters on the convective migration of an organic solvent in the soil environments.

Preparation of Resveratrol-loaded Poly($\varepsilon$-caprolactone) Nanoparticles by Oil-in-water Emulsion Solvent Evaporation Method

  • Kim, Bum-Keun;Lee, Jun-Soo;Oh, Ju-Kyoung;Park, Dong-June
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.157-161
    • /
    • 2009
  • Resveratrol-loaded poly($\varepsilon$-caprolactone) (PCL) nanoparticles were prepared by oil in water (O/W) emulsion solvent evaporation method. The morphology of the nanoparticles was evaluated using atomic force microscope (AFM), in which well-shaped and rigid nanoparticles were prepared. The mean particle size of nanoparticles prepared using only dichloromethane (DCM) ($523.5{\pm}36.7\;nm$) was larger than that prepared with a mixture of DCM and either ethanol (EtOH) ($494.5{\pm}29.2\;nm$) or acetone ($493.5{\pm}6.9\;nm$). The encapsulation efficiency of nanoparticles prepared only with DCM as dispersed phase ($78.3{\pm}7.7%$) was the highest of those prepared with solvent mixtures. An increase in the molecular weight of PCL led to an increase in encapsulation efficiency (from $78.3{\pm}7.7$ to $91.4{\pm}3.2%$). Pluronic F-127 produced the smallest mean size ($523.5{\pm}36.7\;nm$) with the narrowest particle size distribution. These results show that dispersed phase, molecular weight of wall materials, emulsion stabilizer could be important factors to affect the properties of nanoparticles.

Synthesis of $Pb(Mg_{1/3}Nb_{2/3})O_3$ powder by Solvent Evaporation and its Dielectric Property (용매 증발법에 의한 $Pb(Mg_{1/3}Nb_{2/3})O_3$ 분말 합성 및 유전 성질)

  • Lee, Jong-Pil;Lee, Jong-Kook;Kang, Sang-Gu;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.17-24
    • /
    • 1996
  • Pb(Mg1/3Nb2/3)O3 powder with high purity chemical homogeniety and reactivity was prepared by solvent eva-poration of common solution. The common solution was fabricated using a Pb(NO3)2 Mg(NO)3 and NB solution which was prepared by dissolving NbC in H2O2 acquous solution. In precusor powder prepared by solvent evaporation method the synthetic temperature of Pb(Mg1/3 Nb2/3)O3 phase was lowered. And the formation of homogeneous Pb(Mg1/3Nb2/3)O3 phase was enhanced but the formation of pyrochlore phase was reduced. The dielectric constant of PMN ceramics from the synthesized powder was found to increase with both sintering temperature and excess MgO and subsequent analysis of the microstructures confirmed that this was due to an increase in grain size. The grain size dependence is explained as a consequence of low-permittivity grain boundaries.

  • PDF

Preparation and Evaluation of Bupivacaine Microspheres by a Solvent Evaporation Method (II) (용매증발법에 의한 부피바카인 마이크로스피어의 제조 및 평가 (II))

  • 곽손혁;이시범;이종수;이병철;황성주
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.623-633
    • /
    • 2001
  • Various bupivacaine-loaded microspheres were prepared using poly(d,1-lactide) (PLA) and poly(d,1-lactic-co-glycolide) (PLGA) by a solvent evaporation method for the sustained release of drug. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their drug loading, size distribution, surface morphology and release kinetics. Drug loading efficiency and yield of PLGA micro- spheres were higher than those of PLA microspheres. The prepared microspheres had an average particle size below 5${\mu}{\textrm}{m}$. The particle size range of microspheres was 1.65~2.24${\mu}{\textrm}{m}$. As a result of SEM, the particle size of PLA microspheres was smaller than that of PLGA microspheres. In morphology studies, microspheres showed a spherical shape and smooth surface in all process conditions. In thermal analysis, bupivacaine-loaded microspheres showed no peaks originating from bupivacaine. This suggested that bupivacaine base was molecular-dispersed in the polymer matrix of microspheres. The release pattern of the drug from microspheres was evaluated for 96 hours. The initial burst release of bupivacaine base decreased with increasing the molecular weight of PLGA, and the drug from microspheres released slowly. In conclusion, bupivacaine-loaded microspheres were successfully prepared from poly(d,1-lactide) and poly (d,1- lactic-co-glycolide) polymers with different molecular weights allowing control of the release rate.

  • PDF