• Title/Summary/Keyword: solution-deposition

Search Result 867, Processing Time 0.026 seconds

Study on the Fabrication and Characterization of Hydrophobic Surface with Hierarchical Microstructure using Spray Coating Deposition Method (스프레이 코팅 증착 방식을 이용한 계층적 미세 구조의 발수표면 제작 및 특성 분석에 대한 연구)

  • Jongyun Choi;Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.15-22
    • /
    • 2023
  • This research introduces an innovative approach for fabricating microstructure surfaces using spray-coating deposition. The resulting surface, referred to as Magnetically Responsive Microstructures (MRM), exhibits hierarchically structured micro-pillar arrays with remarkably high aspect ratios. The fabrication process involves precisely mixing PDMS and hexane with Carbonyl iron powders, followed by ultrasonication and spray-coating on the top of a PDMS substrate placed on the neodymium magnet. The MRM surface shows hydrophobic properties, characterized by a contact angle surpassing 150° and an aspect ratio exceeding 10. Through a comprehensive exploration of critical parameters, including spray amount, magnet-substrate distance, and solution ratio enhanced dynamic tunability and exceptional hydrophobic characteristics are attained. This novel approach holds significant potential for diverse applications in the realm of dynamically tunable microstructures and magnetically responsive surfaces.

A Study on Indium Gallium Oxide Thin Film Transistors prepared by a Solution-based Deposition Method (저온 용액공정을 이용한 인듐갈륨 산화물(IGO) 박막트랜지스터 제조 및 특성 연구)

  • Bae, Eunjin;Lee, Jin Young;Han, Seung-Yeol;Chang, Chih-Hung;Ryu, Si Ok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.600-604
    • /
    • 2011
  • Solution processed IGO thin films were prepared using a general chemical solution route by spin coating. The effect of the annealing temperature of IGO thin films based on the ratio of 2:1 of indium to gallium on crystallization was investigated with varying annealing temperature from $300^{\circ}C$ to $600^{\circ}C$. The electronic device characteristic of IGO thin film was investigated. The solution-processed IGO TFTs annealed at 300 and $600^{\circ}C$ in air for 1 h exhibited good electronic performances with field effect mobilities as high as 0.34 and 3.83 $cm^2/V{\cdot}s$, respectively. The on/off ratio of the IGO TFT in this work was $10^5$ with 98% transmittance.

Post Ru CMP Cleaning for Alumina Particle Removal

  • Prasad, Y. Nagendra;Kwon, Tae-Young;Kim, In-Kwon;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.34.2-34.2
    • /
    • 2011
  • The demand for Ru has been increasing in the electronic, chemical and semiconductor industry. Chemical mechanical planarization (CMP) is one of the fabrication processes for electrode formation and barrier layer removal. The abrasive particles can be easily contaminated on the top surface during the CMP process. This can induce adverse effects on subsequent patterning and film deposition processes. In this study, a post Ru CMP cleaning solution was formulated by using sodium periodate as an etchant and citric acid to modify the zeta potential of alumina particles and Ru surfaces. Ru film (150 nm thickness) was deposited on tetraethylorthosilicate (TEOS) films by the atomic layer deposition method. Ru wafers were cut into $2.0{\times}2.0$ cm pieces for the surface analysis and used for estimating PRE. A laser zeta potential analyzer (LEZA-600, Otsuka Electronics Co., Japan) was used to obtain the zeta potentials of alumina particles and the Ru surface. A contact angle analyzer (Phoenix 300, SEO, Korea) was used to measure the contact angle of the Ru surface. The adhesion force between an alumina particle and Ru wafer surface was measured by an atomic force microscope (AFM, XE-100, Park Systems, Korea). In a solution with citric acid, the zeta potential of the alumina surface was changed to a negative value due to the adsorption of negative citrate ions. However, the hydrous Ru oxide, which has positive surface charge, could be formed on Ru surface in citric acid solution at pH 6 and 8. At pH 6 and 8, relatively low particle removal efficiency was observed in citric acid solution due to the attractive force between the Ru surface and particles. At pH 10, the lowest adhesion force and highest cleaning efficiency were measured due to the repulsive force between the contaminated alumina particle and the Ru surface. The highest PRE was achieved in citric acid solution with NaIO4 below 0.01 M at pH 10.

  • PDF

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

Effect of Heat Treatment on the Corrosion Resistance of the Al-Mg Coated Steel Sheet (열처리가 Al-Mg 코팅 강판의 내식성에 미치는 영향)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Song, Min-A;Kim, Sung-Hwan;Jeong, Jae-In;Lee, Myeong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Double layer films which consisted of aluminum(Al) and magnesium(Mg) have been prepared by e-beam deposition. The structure, alloy phase, and corrosion resistance of the prepared films were investigated before and after heat treatment. The first (bottom) layer fixed with Al, and the thickness ratio between Al and Mg layers has been changed from 1 : 1 to 5 : 1, respectively. Total thickness of Al-Mg film was fixed at $3{\mu}m$. The cold-rolled steel sheet was used as a substrate. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 2, 3 and 10 min. Surface morphology of as-deposited Al-Mg film having Mg top layer showed plate-like structure. The morphology was not changed even after heat treatment. However, cross-sectional morphology of Al-Mg films was drastically changed after heat treatment, especially for the samples heat treated for 10 min. The morphology of as-deposited films showed columnar structure, while featureless structure of the films appeared after heat treatment. The x-ray diffraction data for as-deposited Al-Mg films showed only pure Al and Mg peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ appeared after heat treatment of the films. It is believed that the formation of Al-Mg alloy phase affected the structure change of Al-Mg film. It was found that the corrosion resistance of Al-Mg film was increased after heat treatment.

Effect of the Coating Structure on the Corrosion Resistance of Al-Mg Coated Steel (Al-Mg 코팅층의 구조가 강판 내식성에 미치는 영향)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Kim, Sung-Hwan;Byeon, In-Seop;Jeong, Jae-In;Lee, Myeong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.5
    • /
    • pp.454-460
    • /
    • 2016
  • Double-layered Al-Mg films have been deposited by using an e-beam deposition method on a cold-rolled steel sheet(CR), which the structure of the film was Al/Mg/CR. The micro-structure, alloy phase, and corrosion resistance of the Al-Mg coated CR were investigated before and after heat treatment at $400^{\circ}C$ for 2, 3, and 10 min in a nitrogen atmosphere. Total thickness of Al-Mg films was fixed at $3{\mu}m$ and the thickness ratio of Al and Mg layers(Al:Mg) has been changed from 5:1 to 1:5. The cross-sectional morphology of the films, which had the thickness ratio of 2:1(Al:Mg), 1:1, and 1:2, was changed after heat treatment from columnar to featureless structure. The x-ray diffraction data for as-deposited films showed only pure Al and Mg peaks. Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ phase appeared after the heat treatment. The Al-Mg coating with the thickness ratio of 1:1(Al:Mg) showed the best corrosion resistance of up to 500 hours by salt spray test.

Deposition behavior of cyanide-free electroless Au plating solution using thiomalic acid as complexing agent and aminoethanethiol as reducing agent and characteristics of plated Au film (티오말산을 착화제로 하고 아미노에탄티올을 환원제로 하는 비시안계 무전해 Au 도금액의 석출 거동 및 도금 특성)

  • Han, Jaeho;Kim, DongHyun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.102-119
    • /
    • 2022
  • Gold plating is used as a coating of connecter in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. As increasing the demand for miniaturization of printed circuit boards and downsizing of electronic devices, several types of electroless gold plating solutions have been developed. Most of these conventional gold plating solutions contain cyanide compounds as a complexing agent. The gold film obtained from such baths usually satisfies the requirements for electronic parts mentioned above. However, cyanide bath is highly toxic and it always has some possibility to cause serious problems in working environment or other administrative aspects. The object of this investigation was to develop a cyanide-free electroless gold plating process that assures the high stability of the solution and gives the excellent solderability of the deposited film. The investigation reported herein is intended to establish plating bath composition and plating conditions for electroless gold plating, with thiomalic acid as a complexing agent. At the same time, we have investigated the solution stability against nickel ion and pull strength of solder ball. Furthermore, by examining the characteristics of the plated Au plating film, the problems of the newly developed electroless Au plating solution were improved and the applicability to various industrial fields was examined. New type electroless gold-plating bath which containing thiomalic acid as a complexing agent showing so good solution stability and film properties as cyanide bath. And this bath shows the excellent stability even if the dissolved nickel ion was added from under coated nickel film, which can be used at the neutral pH range.

A Study on Pitting Resistance of TiN Film Coated on Inconel 600 by CPP Test in High Temperature NaCl Solution (nconel 600위에 증착된 TiN 박막의 고온 NaCl 수용액에서의 CPP 실험에 의한 핏팅저항성의 연구)

  • 김용일;정한섭;김홍회;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1301-1307
    • /
    • 1995
  • Pitting corrosion of TiN film deposited on Inconel 600 by plasma assisted chemical vapor deposition (PACVD) was investigated. Cyclic potentiodynamic polarization (CPP) tests were conducted in order to determine the pit nucleation potentials, Enp, of the TiN-deposited sample and the bare Inconel 600 in deaerated NaCl solution at 25, 135 and 20$0^{\circ}C$. The effects of the TiN film thickness, the solution temperature and the Cl- concentration on Enp were studied. Enp of the TiN-deposited sample which had the film thickness above 1${\mu}{\textrm}{m}$ were higher than those of the bare Inconel 600 by 300~600mV at all the solution temperatures, implying the pitting resistance improvement of the TiN film. The morphologies of the pits generated after immersion test were examined with a scaning electron microscopy. The higher was the solution temperature, the more corrosion products, mainly composed of Cr and Ni oxides, were formed.

  • PDF

Preparation of SDC electrolyte film for IT-SOFCs by electrophoretic deposition (EPD를 이용한 IT-SOFC용 SDC 전해질 필름의 제조)

  • Lee, Kyeong-Seop;Jo, Chul-Gi;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.158-158
    • /
    • 2009
  • The electrophoretic deposition(EPD) technique with a wide range of novel applications in the processing of advanced ceramic materials and coatings, has recently gained increasing interest both in academic and industrial sector not only because of the high versatility of its use with different materials and their combinations but also because of its cost-effectiveness requiring simple apparatus. Compared to other advanced shaping techniques, the EPD process is very versatile since it can be modified easily for a specific application. For example, deposition can be made on flat, cylinderical or any other shaped substrate with only minor charge in electrode design and positioning[1]. The synthesis of the nano-sized Ce0.2Sm0.8O1.9(SDC)particles prepared by aurea based low temperature hydrothermal process was investigated in this study[2].When we made the SDC nanoparticles, changed the time of synthesis of the SDC. The SDC nanoparticles were characterized with field-emission scanning electron microscope(FESEM), energy dispersive X-ray analysis(EDX), and X-ray diffraction(XRD). And also we researched the results of our investigation on electrophoretic deposition(EPD) of the SDC particles from its suspension in acetone solution onto a non-conducting NiO-SDC substrate. In principle, it is possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of SDC particles on a NiO-SDC substrate was made possible through the use of a adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension[3-4]. Deposition rate was found to increase its increasing deposition time and voltage. After annealing the samples $1400^{\circ}C$, we observed that deposited substrate.

  • PDF

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.