• Title/Summary/Keyword: solution coating method

Search Result 549, Processing Time 0.032 seconds

Decomposition of Eco-friendly Liquid Propellants over Ruthenium/Al2O3/metal foam Catalysts (Ru/Al2O3/메탈폼 촉매를 이용한 친환경 액체추진제 분해)

  • Yoo, Dalsan;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.256-262
    • /
    • 2019
  • Hydroxylammonium nitrate (HAN)-based liquid propellants are attracting attention as environmentally friendly propellants because they are not carcinogens and the combustion gases have little toxicity. The catalyst used to decompose the HAN-based liquid propellant in a thruster must have both low temperature activity and high heat resistance. The objective of this study is to prepare an Ru/alumina/metal foam catalyst by supporting alumina slurry on the surface of NiCrAl metal foam using a washing coating method and then to support a ruthenium precursor thereon. The decomposition activity of a HAN aqueous solution of the Ru/alumina/metal foam catalyst was evaluated. The effect of the number of repetitive coatings of alumina slurry on the physical properties of the alumina/metal foam was analyzed. As the number of alumina wash coatings increased, mesopores with a diameter of about 7 nm were well-developed, thereby increasing the surface area and pore volume. It was optimal to repeat the wash coating alumina on the metal foam 12 times to maximize the surface area and pore volume of the alumina/metal foam. Mesopores were also well developed on the surface of the Ru/alumina/metal foam catalyst. It was found that the metal form itself without the active metal and alumina can promote the decomposition reaction of the HAN aqueous solution. In the case of the Ru/alumina/metal foam-550 catalyst, the decomposition onset temperature was significantly lowered compared with that of the thermal decomposition reaction, and ${\Delta}P$ could be greatly increased in the decomposition of the HAN aqueous solution. However, when the catalyst was calcined at $1,200^{\circ}C$, the catalytic activity was lowered inevitably because the surface area and pore volume of the catalyst were drastically reduced and Ru was sintered. Further research is needed to improve the heat resistance of Ru/alumina/metal foam catalysts.

Stability of TiN and WC Coated Dental Abutment Screw (TiN 및 WC코팅된 치과용 어버트먼트 나사의 안정성)

  • Son, M.K.;Lee, C.H.;Chung, C.H.;Jeong, Y.H.;Choe, H.C.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.6
    • /
    • pp.292-300
    • /
    • 2008
  • Dental implant system is composed of abutment, abutment screw and implant fixture connected with screw. The problems of loosening/tightening and stability of abutment screw depend on surface characteristics, like a surface roughness, coating materials and friction resistance and so on. For this reason, surface treatment of abutment screw has been remained research problem in prosthodontics. The purpose of this study was to investigate the stability of TiN and WC coated dental abutment screw, abutment screw was used, respectively, for experiment. For improving the surface characteristics, TiN and WC film coating was carried out on the abutment screw using EB-PVD and sputtering, respectively. In order to observe the coating surface of abutment screw, surfaces of specimens were characterized, using field emission scanning electron microscope(FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The stability of TiN and WC coated abutment screw was evaluated by potentiodynamic, and cyclic potentiodynamic polarization method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion potential of TiN coated specimen was higher than those of WC coated and non-coated abutment screw. Whereas, corrosion current density of TiN coated screws was lower than those of WC coated and non-coated abutment screw. The stability of screw decreased as following order; TiN coating, WC coating and non-coated screw. The pitting potentials of TiN and WC coated specimens were higher than that of non-coated abutment screw, but repassivation potential of WC coated specimen was lower than those of TiN coated and non-coated abutment screws due to breakdown of coated film. The degree of local ion dissolution on the surface increased in the order of TiN coated, non-coated and WC coated screws.

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Cost-Effective Soft Lithography of Organic Semiconductors in OFETs with Compact Discs as Master Molds (Compact Disc를 마스터 몰드로 사용하는 저비용의 OFET용 유기반도체 소프트 리소그래피)

  • Sejin Park;Hyukjin Kim;Tae Kyu An
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.116-121
    • /
    • 2022
  • OFET have require fine patterning technology for organic semiconductor solution process to be used in actual electronics. In this study, we compared and analyzed the soft lithography method which can form fine patterns more than the conventional spin coating method in order to confirm that it can have better electrical characteristics. The soft lithography method produced a flexible master mold using nano patterns on compact disc surfaces and obtained a 650 nm wide 2,7-Dioctyl [1] benzothieno [3,2-b] [1] benzo thiophene (C8-BTBT) nanowires. As a result, the field-effect mobility of devices fabricated by the spin coating method was 0.0036 cm2/Vs and mobility of devices produced by soft lithography method was 0.086 cm2/Vs, which was about 20 times higher than spin-coated devices and has better electrical performance.

Preparation of Silica Films by Sol-Gel Process (졸-겔 법을 이용한 실리카 박막의 제조)

  • 이재준;김영웅;조운조;김인태;제해준;박재관
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.893-900
    • /
    • 1999
  • Silica films were prepared on Si single crystal substrates by sol-gel process using TEOS as starting materials. Films were fabricated by a spin coating technique. Sol solutions were prepared by varying the compositions of CH3OH, H2O and DMF with fixed molar ratio of TEOS=1, HCl=0.05(mol). Wetting behavior viscosity of solutions gelation time thickness of films and cracking behavior were investigated with the various solution compositions. Wetting behaviors of solutions depended on the solution compositions mixing method and mixing rate. The optimum composition of sol was TEOS : DMF ; CH3OH: H2O :HCl=1:2:4:4:0.05(mol) and the mixing rate of solution was optimized at 1 ml/min. Viscosity of solutions were controlled by choosing a reaction time(elapsed time after mixing) at a room temperature so that we could get up to 800nm thick film The surface roughness was getting poor when thickness of films was thicker than 500nm. Thickness of coated films were increased with decreasing amount of CH3OH. The best surface roughness was obtained at the content of CH3OH 4 mol. The shortest gelation time was obtained with the content of CH3OH 8 mol. Crack-free filkms were fabricated when sintered at 500$^{\circ}C$ for 1 hr with heating rate of 0.6$^{\circ}C$/min.

  • PDF

Solution-processed Polymer Tandem Cells Using Nano Crystalline $TiO_2$ Interlayer ($TiO_2$ 나노 입자의 중간 전극을 이용한 직렬 적층형 유기 태양 전지)

  • Chung, Won-Suk;Ju, Byeong-Kwon;Ko, Min-Jae;Park, Nam-Gyu;Kim, Kyung-Kon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.444-444
    • /
    • 2008
  • For the polymer tandem cell, simple and advantaged solution-based method to electron transport intermediate layer is presented which are composed $TiO_2$ nanoparticles. Device were based on a regioregular Poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl $C_{61}$ butyric acid methyl ester($PC_{60}BM$) blend as a donor and acceptor bulk-heterojunction. For the middle electrode interlayer, the $TiO_2$ nanoparticles were well dispersed in ethanol solution and formed thin layer on the P3HT:PCBM charge separation layer by spin coating. The layer serves as the electron transport layer and divides the polymer tandem solar cell. The open-circuit voltage (Voc) for the polymer tandem solar cells was closed to the sum of those of individual cells.

  • PDF

Improvement of MOD Processing by Applying F-free Y & Cu Precursor Solution (F-free Y & Cu 전구용액 적용에 의한 YBCO coated conductors의 MOD 공정 개선)

  • Kim, Y.K.;Yoo, J.M.;Chung, K.C.;Ko, J.W.;Cho, Y.S.;Heo, E.O.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.22-26
    • /
    • 2006
  • Total Fluorine content in the precursor solution for MOD processing of YBCO coated conductors can be significantly reduced by synthesizing precursor solution with F-free Y & Cu precursor and Barium trifluoroacetate(TFA). It was shown that crack-free and uniform precursor films were formed after calcinations in humidified oxygen atmosphere. Less than 2 hours are required to finish the calcination process, and XRD measurement shows that $BaF_2,\;CuO,\;and\;Y_2O_3$ are major constituent of calcined precursor films. Film thickness after calcination was measured to be ${\sim}2.8$ um by applying slot-die coating method. In particular, addition of Samarium shows critical current of Ic=226 A/cm-w($Jc=3.4\;MA/cm^2$). Also discussed are recent developments in the reel-to-reel processing using F-free Y & Cu precursor solutions. It is shown that uniform and fast processing route to YBCO coated conductor with high Ic can be provided by employing F-free Y & Cu precursor solutions in MOD process.

  • PDF

Surface Treatment of ITO (Indium-Tin-Oxide) thin Films Prepared by Sol-Gel Process (졸-겔 공정에 의해 제조된 ITO (Indium-Tin-Oxide) 박막의 표면처리)

  • Jung, Seung-Yong;Yun, Young-Hoon;Yon, Seog-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.313-318
    • /
    • 2007
  • ITO (Indium-tin oxide) thin films have been prepared by a sol-gel spinning coating method and fired and annealed in the temperature range of $450-600^{\circ}C$. The XRD patterns of the films indicated the main peak of (222) plane and showed higher crystallinity with increasing an annealing temperature. The surface of the ITO thin films were treated with 0.1 N HCl 20% solution at room temperature. The effects of surface treatment on electrical properties and surface morphologies of the ITO films were investigated with the results of sheet resistance and FE-SEM, AFM images. The samples, subsequently treated with acidic solution for 40 sec showed the sheet resistance of $0.982\;k{\Omega}/square$. The surface treatment using acidic solution diminished the RMS (root mean square) value and the residual carbon content of the ITO films. It seemed that the acid-cleaning of the ITO thin films lead to the decrease of surface roughness and sheet resistance.

A Study on the Material Characteristics of the NiO/ZnO Ultraviolet Sensor Based on Solution Process (용액 공정 기반 NiO/ZnO계 자외선 센서용 재료 특성 연구)

  • Moon, Seong-Cheol;Lee, Ji-Seon;No, Kyeong-Jae;Yang, Seong-Ju;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.508-513
    • /
    • 2017
  • Ultraviolet (UV) photodetectors are used in various industries and fields of research, including optical communication, flame sensing, missile plume detection, astronomical studies, biological sensors, and environmental research. However, general UV detectors that employ Schottky junction diodes and p-n junctions have high fabrication cost and low quantum efficiency. In this study, we investigated the characteristics of materials used to manufacture UV photodetectors in a low-cost solution process that requires easy fabrication of flexible substrates. We fabricated p-type NiO and n-type ZnO substrates with wide band gap by the sol-gel method and compared the characteristics of substrates prepared under different spin-coating and heat-treatment conditions.

Optical Properties of All Solution processed ZnO/Ag/ZnO Multilayers (용액공정으로 제작한 ZnO/Ag/ZnO 다층구조의 광학적 특성 연구)

  • Lee, Hyungin;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.119-122
    • /
    • 2018
  • Various ZnO/Ag/ZnO multilayers were fabricated and their optical properties were investigated. Top and bottom ZnO layers were formed by sol-gel method and mid-metal layers were deposited by spin coating. To find suitable deposition condition of Ag, we measure thickness and sheet resistance of Ag monolayer. After the optimization of Ag monolayer, we fabricate ZnO/Ag/ZnO multilayers. Transmittance of ZnO/Ag/ZnO multilayers increased to 63%. In near IR region, transmittance of ZnO/Ag/ZnO multilayers decreased to 35% when the concentration of Ag solution was 2.5wt%.