• Title/Summary/Keyword: solubility enhancer

Search Result 18, Processing Time 0.023 seconds

Solubility Enhancement of Flavonoids by Cyclosophoraose Isolated from Rhizobium meliloti 2011

  • Kang Si-Mook;Lee Sang-Hoo;Kwon Chan-Ho;Jung Seun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.791-794
    • /
    • 2006
  • Cyclosophoraose (cyclic $\beta-(1,2)-glucan$, Cys) isolated from Rhizobium meliloti, a soil microorganism, was used as a solubility enhancer for flavonoids. The complexes of the cyclic oligosaccharide with flavonoids were confirmed through $^1H$ nuclear magnetic resonance (NMR) spectroscopic analysis. Flavonoids solubilized by Cys were quantitatively analyzed through high-performance liquid chromatography (HPLC). Among the flavonoids tested, the solubility of naringenin was greatly enhanced by Cys, compared with other compounds. The solubility of naringenin was enhanced about 7.1-fold by adding 10 mM Cys, compared with a control. $^1H$ NMR spectroscopic analysis indicated that the H-6 and H-8 protons, which are located on the A ring of naringenin, were greatly shifted upfield upon the complexation with Cys. This result suggested that Cys showed a regioselective interaction with the naringenin molecule upon the complexation, resulting in the solubility enhancement of naringenin.

Ketorolac Ester Enhancer-prodrugs: Preparation and Evaluation of Their Physicochemical Properties

  • Yun, Sung-Il;Kim, Jung-Sun;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.405-412
    • /
    • 2008
  • Six ester analogues of Ketorolac were synthesized as potential enhancer prodrugs for transdermal delivery. Solubility of these esters was determined in 10% propylene glycol (PG)/isotonic phosphate buffer (IPB) at room temperature while lipophilicity was obtained as partition coefficients (log P) and capacity factors (k') using HPLC. Stability of the prodrugs in skin extract and in plasma was investigated at $37^{\circ}C$. The lipophilicity of the potential prodrugs increased in proportion to their alkyl chain length. Good linear relationship between partition coefficients (log P) and capacity factors (log k') was observed ($R^2=0.9961$). All of the analogues were fairly stable but slowly degraded in IPB over a 12 hour period. However, their stability in skin extract and in plasma varied with most compounds gradually decomposing over a 12 hour period. Although unsaturation of the alkyl ester chain did not alter the over all lipophilicity of the compound, the half-life was significantly affected. In plasma, degradation of the esters was slower than in the skin extract, which is a desirable trait for enhancer-prodrugs. However, the overall hydrolysis in the skin extract needs to be facilitated for the development of an effective enhancer prodrug. The analogue with the shortest half life in the skin extract was the unsaturated C-12 analogue of 0.96 hr.

Controlled Transdermal Delivery of Loxoprofen from an Ethylene-Vinyl Acetate Matrix

  • Ryu, Sang-Rok;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.347-354
    • /
    • 2011
  • Repeated oral administration of loxoprofen can induce many side effects such as gastric disturbances and acidosis. Therefore, we considered alternative routes of administration for loxoprofen to avoid such adverse effects. The aim of this study was to develop an ethylene-vinyl acetate (EVA) matrix system containing a permeation enhancer for enhanced transdermal delivery of loxoprofen. The EVA matrix containing loxoprofen was fabricated and the effects of drug concentration, temperature, enhancer and plasticizer on drug release were studied from the loxoprofen-EVA matrix. The solubility of loxoprofen was highest at 40% (v/v) PEG 400. The release rate of drug from drug-EVA matrix increased with increased loading dose and temperature. The release rate was proportional to the square root of loading dose. The activation energy (Ea), which was measured from the slope of log P versus 1000/T, was 5.67 kcal/mol for a 2.0% loaded drug dose from the EVA matrix. Among the plasticizer used, diethyl phthalate showed the highest release rate of loxoprofen. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the greatest enhancing effect. In conclusion, for the enhanced controlled transdermal delivery of loxoprofen, the application of the EVA matrix containing plasticizer and penetration enhancer could be useful in the development of a controlled drug delivery system.

Effect of Polyoxyethylene Alkyl Esters on Permeation Enhancement and Impedance of Skin

  • Kim, Hee-Sun;Oh, Seaung-Youl
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.109-117
    • /
    • 2011
  • In this work, we have investigated the effect of polyoxyethylene alkyl ester nonionic surfactants on percutaneous permeation enhancement of a model drug, ketoprofen. We also investigated the mechanism involved in the enhancement using impedance and solubility measurement. Three groups of nonionic surfactants with different ethylene oxide content were studied. The permeation results showed that all surfactants enhanced the percutaneous absorption, irrespective of the molecular weight. The permeation results from PEG-45 monostearate (PEGMS45) were rather unexpected. Impedance and solubility results indicate that the mechanism involved in the enhancement of permeation by PEG-10 monooleate (PEGMO10) and PEGMS45 is rather different. The results from PEGMS45 suggest that it could be a potential candidate as a skin penetration enhancer with high molecular weight, which may poses less skin irritation and systemic side effect than the smaller surfactant molecules. Overall, this work provided some useful information on percutaneous transport enhancement and the mechanistic insights involved in skin permeation for these nonionic surfactants.

Absorption Enhancer and Polymer (Vitamin E TPGS and PVP K29) by Solid Dispersion Improve Dissolution and Bioavailability of Eprosartan Mesylate

  • Ahn, Jae-Soon;Kim, Kang-Min;Ko, Chan-Young;Kang, Jae-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1587-1592
    • /
    • 2011
  • The aim of the present study was to improve the solubility and bioavailability of a poorly water-soluble drug in human body, using a solid dispersion technique (hot melt extrusion). The solid dispersion was prepared by cooling the hot melt of the drug in the carrier (Vitamin E TPGS and PVP). The dissolution rate of formulation 1 from a novel formulation prepared by solid dispersion technique was equal to release of formulation 6 (40% of eprosartan mesylate is in contrast to teveten$^{(R)}$) within 60 min (Table 1). The oral bioavailability of new eprosartan mesylate tablet having vitamin E TPGS and PVP K29 was tested on rats and dogs. Of the absorption enhancer and polymer tested, vitamin E TPGS and PVP K29, resulted in the greatest increases of AUC in animals (about 2.5-fold increase in rat and dog). When eprosartan mesylate was mixed with the absorption enhancer and polymer in a ratio of 2.94:2:1, vitamin E TPGS and PVP K29 improved eprosartan mesylate bioavailability significantly compared with the conventional immediate release (IR) tablet Teveten$^{(R)}$ (formulation 7). These results show that solid dispersion using vitamin E TPGS and PVP K29 is a promising approach for developing eprosartan mesylate drug products.

Increase of Permanent Wave Efficacy and Decrease of Hair Damage by using Enhancer of Permanent Wave Lotion (흡수촉진제를 이용한 펌제의 웨이브 효율 증가 및 모발손상 억제)

  • Song Hee-Ra;Park Myung-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.4 s.103
    • /
    • pp.124-133
    • /
    • 2006
  • Human hair could be damaged by various physicochemical conditions and treatment. Permanent and decoloring treatment were the most serious factor on hair damage. The new permanent wave lotion containing Permeation enhancers such as Cremophor EL, Transcutol and propylene glycol based on cysteine permanent wave lotion were prepared. Efficiency of permanent wave and hair damage following pH of permanent wave lotion and addition of permeation enhancer were investigated. PH of solution, wave efficiency, loss of protein from hair, morphology of hair by SEM and solubility of alkaline solution were evaluated. The addition of Cremophor EL and Transcutol with ethanol increased permanent wave efficacy and decreased hair damage effectively. They diminished permanent wave lotion's pH and augmented permanent wave lotion's penetration compare to cysteine permanent wave lotion. new permanent wave lotion containing permeation enhancers such as Cremophor EL could be a good candidate for a new permanent wave lotion.

Solubilization of Quercetin , and Permeability Study of Quercetin and Rutin to Rabbit Duodenal Mucosa (퀘르세틴의 가용화 , 퀘르세틴 및 루틴의 토끼 십이지장 점막 투과성)

  • Chun, In-Koo;Seo, Eun-Ha
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.59-69
    • /
    • 1998
  • To increase the solubility of quercetin, which is a practically insoluble flavonoid of Ginkgo biloba leaf, the effects of nonaqueous vehicles. Their cosolvents, water-sol uble polymers and modified cyclodextrins (CDs) were observed. Polyethylene glycols, diethyleneglycol monoethyl ether, and their cosolvents with water showed a good solvency toward quercetin. Also the aqueous solutions of povidone, copolyvidone and Cremophor RH 40 was effective in solubilizing quercetin. Complex formation of quercetin with ${\beta}$-cyclodextrin (${\beta}$-CD), dimethyl-${\beta}$-cyclodextiin (DMCD), 2-hydroxypropyl-${\beta}$-cyclodextrin (HPCD) and ${\beta}$-cyclodextrin sulfobutyl ether (SBCD) in water was investigated by solubility method at $37^{\circ}C$. The addition of CDs in water markedly increased the solubility of quercetin with increasing the concentration. AL type phase solubility diagrams were obtained with CDs studied. Solubilizaton efficiency by CDs was in the order of SBCD >> DMCD > HPCD > ${\beta}$-CD. The dissolution rates of quercetin from solid dispersions with copolyvidone, povidone and HPCD were much faster than those of drug alone and corresponding physical mixtures, and exceeded the equilibrium solubility (3.03${\pm}1.72{\mu}$g/ml). The permeation of quercetin through duodenal mucosa did not occur even in the presence of enhancers such as bile salts, but the permeation was observed when the mucus layer was scraped off. This was due to the fact that quercetin had a strong binding to mucin ($58.5{\mu}$g/mg mucin). However rutin was permeable to the duodenal mucosa. The addition of enhancer significantly increased the permeation of rutin in the order of sodium glycocholate.

  • PDF

A Study on Lubricant additive of DME Common-rail Vehicle (DME 커먼레일 차량의 윤활향상제에 관한 연구)

  • Park, JungKwon;Kim, Hyunchul;Jeong, SooJin;Chon, MunSoo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.15-18
    • /
    • 2013
  • The next generation alternative fuel of diesel, DME (Dimethyl Ether) discharges particulate matter hardly due to chemical structural as oxygen-fuel so it has the eco-friendly property. Despite these advantages, the DME has the technical difficulties to apply to the diesel engine because of a low calorific value, viscosity and compressibility effects. From this point of view, we performed experimental studies on improved reliability of DME common-rail vehicle and lubricity enhancement of DME fuel for empirical distribution of eco-friendly DME fuel. Also we analyzed solubility of lubrication enhancer according to a drop in temperature, try to secure reliability about core parts of DME vehicle by applying lubrication enhancer in the DME common-rail vehicle.

  • PDF

Study of the Percutaneous Absorption, Stability and Physicochemical Properties of $OMP-{\beta}-CD$ Inclusion Complex ($OMP-{\beta}-CD$ 포접화합물의 물리화학적 성질, 안정성 및 피부 투과 실험)

  • Lee, Sang-Young;Lee, Gye-Won;Choi, Hyun-Soon;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.271-277
    • /
    • 1997
  • Because omeprazole(OMP) is very unstable in aqueous condition, $OMP-{\beta}-CD$, the inclusion complex of OMP and ${\beta}-cyclodextrin({\beta}-CD)$ was made and physicochemical properties of it were compared with those of OMP. Skin permeability of OMP and $OMP-{\beta}-CD$ in propylene glycol vehicle and the reciprocal action of ${\beta}-CD$ with various enhancers were examined through hairless mouse. Adhesive patches were prepared with polyisobutylene and the skin permeability and stability of OMP were investigated. The inclusion complex showed higher solubility and lower partition coefficient than OMP itself. DMSO, 1-methyl 2-pyrrolidone and sodium cholate had an enhancing effect. However ethanol and polysorbate 80 hardly showed the enhancing effect of OMP. When sodium lauryl sulfate and sodium cholate as enhancer were added in patch, the former case showed higher permeability of OMP.

  • PDF

Enhanced Solubility and In vitro Skin Permeation of Lovastatin Using Some Vehicles and Penetration Enhancers (수종 용제와 투과 촉진제를 이용한 로바스타틴의 용해성 및 피부 투과 증진)

  • Lee, Na Young;Chun, In Koo
    • YAKHAK HOEJI
    • /
    • v.58 no.3
    • /
    • pp.171-180
    • /
    • 2014
  • To enhance the in vitro permeation of lovastatin through excised hairless mouse and human cadaver skins, solubility was determined in various hydrophilic and lipophilic vehicles, and the effects of vehicles and penetration enhancers on the skin permeation from solution formulations were investigated. Solubility of lovastatin was highest in N-methyl-2-pyrrolidone (NMP) ($278.2{\pm}10.1$ mg/ml) and dimethyl sulfoxide (DMSO) ($162.2{\pm}9.7$ mg/ml). Among different pure vehicles used, NMP, DMSO, propylene glycol and isopropyl myristate provided some drug permeation ($6.9{\pm}1.1$, $5.9{\pm}1.6$, $3.0{\pm}0.5$ and $2.2{\pm}0.3{\mu}g/cm^2$ at 24 hr, respectively) through hairless mouse skin. The addition of oleic acid, linoleic acid and oleyl alcohol to DMSO showed the maximum permeation at around 5 v/v%, however, capric acid and caprylic acid had no enhancing effect. The increase of enhancer concentrations showed bell-shaped permeation rate, suggesting the presence of optimal concentration in lovastatin penetration. Increasing donor concentration from 10 mg/ml to 80 mg/ml in DMSO and a cosolvent of DMSO, NMP and DGME (3 : 3 : 4 v/v) did not show significant dose dependent permeation in both hairless mouse and human cadaver skins. The maximum lovastatin flux through human cadaver skin was found to be $0.87{\pm}0.46{\mu}g/cm^2$/hr with 5 v/v% linoleic acid and donor dose of 4 mg/0.64 $cm^2$ in the cosolvent. These results suggest that transdermal delivery of lovastatin would be feasible by establishing the optimal concentrations of donor dose and unsaturated fatty acids in appropriate vehicles.