• 제목/요약/키워드: solidification characteristics

검색결과 227건 처리시간 0.027초

차압주조공정에서 공정변수가 후육 주조품의 주조특성에 미치는 영향 (Effect of Process Parameters on Thick-wall Thickness Casting Characteristics in Counter Pressure Casting Process)

  • 강호정;윤필환;이규흔;김억수;박진영
    • 한국주조공학회지
    • /
    • 제40권2호
    • /
    • pp.34-42
    • /
    • 2020
  • The effects of the initial balancing pressure, filling pressure and maximum build-up pressure on the casting characteristics of the thick-wall thickness casting during the counter-pressure casting process were investigated. Water model experiment and a computer simulation were carried out to evaluate the characteristics during the filling and solidification stages in counter-pressure casting (CPC); as a reference, the low-pressure casting (LPC) process was used. The average dendrite cell size decreased with an increase in the solidification rate and maximum build-up pressure. A turbulent flow occurred during the filling stage of the LPC process, resulting in the formation of inner gas, while a lamellar flow pattern dominated during the CPC process and was more evident with an increase in the initial balancing pressure, improving the mechanical properties of the castings.

Squeeze Cast한 Al기지 금속복합재료의 응고거동 (Solidification Characteristics of Squeeze Cast Al Alloy Composites)

  • 김대업;김진;박익민
    • 한국주조공학회지
    • /
    • 제11권3호
    • /
    • pp.208-216
    • /
    • 1991
  • The solidification behavior of the squeeze cast composites of aluminum alloys reinforced with boron fiber($100{\mu}m$) and silicon carbide fibers($140{\mu}m$ and $15{\mu}m$) were investigated. Al-4.5wt%Cu and Al-l0wt%Mg were chosen for the matrix phase of the composites. In the squeeze cast specimen with high thermal difference between fiber and melt, the average secondary dendrite arm spacing(DAS) in reinforced alloy is smaller than that in unreinforced alloy. It was also observed that primary ${\alpha}$ and non-equilibrium eutectic, which seems to be penetrated and solidified at the final stage of the solidification of the matrix, are irregularly distributed around fibers. It is considered that cold fibers serve as heterogeneous nucleation site. While in the remelted and resolidified specimen without temperature difference, the DAS was not changed with reinforcement and microstructure reveals non-equilibrium eutectic with relatively uniform thickness around fibers. It might be evident the nucleation starts at interfiber region. Microsegregation decreases with the decrease in cooling rate and with reinforcement in the as-squeeze cast specimen. Al-10wt% Mg alloy shows less microsegregation than Al-4.5wt%Cu alloy.

  • PDF

하수차집관로 준설토양의 콘크리트골재 적용성 평가에 관한 연구 (Feasibility Study on the Use of Dredged Soil from Sewage Pipes as a Concrete Material)

  • 김준하;김형욱;김인식;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권2호
    • /
    • pp.10-16
    • /
    • 2017
  • Recently, the gap between demand and supply of natural aggregate has increased owing to the depletion of aggregate sources. Therefore, policy support is necessary for the stable supply of aggregate resources. Public and construction works experience problems when they do not receive a steady supply of aggregate. Further, instabilities in aggregate supply lead to increases in aggregate prices, and consequently construction costs. As a result, the likelihood of poor construction using low-grade aggregate increases. It is therefore crucial to put measures in place that deal with these issues. This study aims to reduce the load imposed by aggregate use on the environment by recycling soil dredged from sewage ducts to reduce the gap between supply and demand of fine aggregate. The dredged soil is assessed using an applicability test for quality characteristics and solidification with basic properties. This study aims to secure the safety of dredging soil and solidified objects through interior physical and chemical analyses and to utilize it as a base material for concrete solidification in the future.

주형의 회전이 Al-Cu 합금의 응고과정에 미치는 영향 (The effect of mold rotation on solidification process of an Al-Cu alloy)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.525-540
    • /
    • 1997
  • The effect of mold rotation on the transport process and resultant macrosegregation pattern during solidification of an Al-Cu alloy contained in a vertical axisymmetric annular mold cooled from the inner wall is numerically investigated. The mold initially at rest starts to rotate at a prescribed angular velocity simultaneously with the beginning of cooling. Computed results for a representative case show that the mold rotation essentially suppresses the development of both thermal and solutal convections in the melt, creating distinct characteristics such as the liquidus front, flow pattern and temperature distribution from those for the stationary mold. Thermal convection which develops at the early stages of cooling is soon extinguished by the rotating flow induced during spin-up, and thus does not effectively remove the initial superheat from the melt. On the other hand, solutal convection, though it weakens considerably and is confined within the mushy zone, still predominates over the solute redistribution process. With increasing the angular velocity, the solute transport in the axial direction is enhanced, whereas that in the radial direction is reduced. The final macrosegregation formed in the mold rotating at moderate angular velocities appears to be favorable in comparison with the stationary casting, in that not only relatively homogenized composition is achieved, but also a severely positive-segregated channel is restrained.

Fundamental study on development of latent heat storage material for waste heat recovery of biomass gasification

  • Kim, MyoungJun;Yu, JikSu;Chea, GyuHoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권5호
    • /
    • pp.533-540
    • /
    • 2014
  • Recently, latent heat thermal energy storage system (LHTES) has gained attention in order to utilize middle temperature (373~573 K) waste heat from biomass gasification. This paper has investigated thermo-physical properties of erythritol [$CH_2OHCHOH$ $CHOHCH_2OH$], mannitol [$CH_2OH$ $(CHOH)_4CH_2OH$] and their compounds as phase change materials (PCMs). The differential scanning calorimetry (DSC) was applied to measure the melting point and latent heat of these PCMs. Also the melting and solidification characteristics of these PCMs were observed in a glass tube with a digital camera. In the DSC measurement, when the amount of mannitol content was more than 40 mass%, the melting point of these compounds show two melting points. The experimental results showed that the velocity of melting and solidification were different for every mixture ratio of compounds. These compounds had the super-cooling phenomenon during the solidification process.

Production of concrete paving blocks using electroplating waste - Evaluation of concrete properties and solidification/stabilization of waste

  • Sgorlon, Juliana Guerra;Tavares, Celia Regina Granhen;Franco, Janaina de Melo
    • Advances in environmental research
    • /
    • 제3권4호
    • /
    • pp.337-353
    • /
    • 2014
  • The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.

동결주조 다공질 뮬라이트 세라믹스의 제조와 석탄회의 재활용 (Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash)

  • 김규헌;윤석영;박홍채
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.61-66
    • /
    • 2016
  • In order to fabricate porous mullite ceramics with controlled pore structure and improved mechanical strength, a freeze casting route has been processed using camphene mixed with tertiary-butyl alcohol (TBA) and coal fly ash/alumina as the solvent and the ceramic material, respectively. After sintering, the solidification characteristics of camphene and TBA solvent were evident in the pore morphology, i.e., dendritic and straight pore channels formed along the solidification directions of camphene and TBA ice, respectively, after sublimation. Also, the presence of microcracks was observed in the bodies sintered at $1500^{\circ}C$, mainly due to the difference in solidification volume change between camphene and TBA. The compressive strength of the sintered bodies was found generally to be dependent, in an inverse manner, on the porosity, which was mainly determined by the processing conditions. After sintering at $1300{\sim}1500^{\circ}C$ with 30~50 wt% solid loading, the resulting mullite ceramics showed porosity and compressive strength values in ranges of 83.8~43.1% and 3.7~206.8 MPa, respectively.

친환경 토질개량제를 이용한 도로노반 건설공사에 관한 연구 (Construction of roadbed with environmental friendly soil amendment agent)

  • 고용국
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.417-421
    • /
    • 2003
  • The purpose of this paper is to study on the construction of roadbed with environmental friendly soil amendment agent. The special amendment agent used in this study is mainly composed of inorganic metal salts such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride,, thus is friendly to the environment, and has a function of soil-cement-agent solidification. Various components of this agent weaken the negative function of humic acid and decompose humic acid itself. Then, the calcium cation of the cement can now be made contact directly to the soil surface. The project of local road demonstration of roadbed construction with special soil treatment agent was peformed in Northeast Thailand on August 1999 by the sponsor of Highway Department of Thailand. A series of field experiments including unconfined compressive strength were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this solidifying agent. The results of this research showed that the roadbed using poor soil could be efficiently constructed by treatment of this amendment agent.

  • PDF

삼면(三面)L-형(型) 주물(鑄物)의 주형내응고특성(鑄型內凝固特性)에 관(關)한 연구(硏究) (A Study on the Solidification Characteristics of 3-PLane L-Sections Castings in the Mold)

  • 한윤희;이계완
    • 한국주조공학회지
    • /
    • 제5권4호
    • /
    • pp.283-288
    • /
    • 1985
  • The melt of highly purified Zn was poured by top pouring process into the open green sand mold, that was made by using the 3-plane L-sections pattern. After skin was formed, the unsolified melt was poured out by rolling-over. The thicknesses of skin for each different of castings were investigated with one dimension. The results obtained and could be summerzed as follows: 1) While the 3-plant L-sections castings were solidifying in the mold, solidification blocks of different section modulus in the castings were formed, i.e. 1-dimension divergency block, 2-dimension heat divergency block, 3-dimension heat divergency block, 2-dimension heat convergency block, and 3-dimension heat convergency block. 2) When the chill plate was set up to the mold in order to change section modulus artificially, heat divergency blocks and heat convergency blocks according to the shape of chill plate were revealed.

  • PDF

급속응고기술에 의한 n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ 열간압축제의 열전특성 (Thermoelectric Properties of n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing)

  • 김익수
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.253-259
    • /
    • 1996
  • The efficiency of thermoelectric devices for different applications is known to depend on the thermoelectric effectiveness of the material which tends to grow with the increase of its chemical homogeneity. Thus an important goal for thermal devices is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification (melt spinning method) followed by hot pressing was investigated to produce homogeneous material. Characteristics of the material were examined with HRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as dopant ${CdCl}_{2}$ quantity and hot pressing temperature. Quenched ribbons are very brittle and consist of homogeneous $Bi_2Te_3$, ${Bi}_{2}{Se}_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 2.038$\times$$10^{-3}K^{-4}. The bending strength of the material hot pressed at 50$0^{\circ}C$ was 8.2 kgf/${mm}^2$.

  • PDF