• 제목/요약/키워드: solid-state disk

검색결과 113건 처리시간 0.03초

Priority-Based Hybrid File Storage Management System Using Logical Volume Manager (논리 볼륨 매니저를 이용한 파일 우선순위 기반의 하이브리드 저장장치 관리 시스템)

  • Choi, Hoonha;Kim, Hyeunjee;No, Jaechun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제53권12호
    • /
    • pp.94-102
    • /
    • 2016
  • Recently, the I/O performance of a single node is rapidly improving due to the advent of high-performance SSD. As a result, the next-generation storage platform based on SSD has received a great deal of attention and such storage platforms are increasingly adopted to commodity servers or data centers that look for the high-bandwidth computation and I/O. However, building all SSD-based storage platform may not be cost-effective because the price per storage capacity is very high as compared to that of HDD. In this paper. we propose a hybrid file management solution, called HyPLVM(Hybrid Priority Logical Volume Manager), which combines the strength of SSD with the desirable aspects of low-price, high-storage capacity HDD. HyPLVM prioritizes the files and directories to be accessed by users, in order to determine the target storage device (SSD/HDD) in which files are allocated, while mitigating the cost of building storage platforms.

Performance Optimization in GlusterFS on SSDs (SSD 환경 아래에서 GlusterFS 성능 최적화)

  • Kim, Deoksang;Eom, Hyeonsang;Yeom, Heonyoung
    • KIISE Transactions on Computing Practices
    • /
    • 제22권2호
    • /
    • pp.95-100
    • /
    • 2016
  • In the current era of big data and cloud computing, the amount of data utilized is increasing, and various systems to process this big data rapidly are being developed. A distributed file system is often used to store the data, and glusterFS is one of popular distributed file systems. As computer technology has advanced, NAND flash SSDs (Solid State Drives), which are high performance storage devices, have become cheaper. For this reason, datacenter operators attempt to use SSDs in their systems. They also try to install glusterFS on SSDs. However, since the glusterFS is designed to use HDDs (Hard Disk Drives), when SSDs are used instead of HDDs, the performance is degraded due to structural problems. The problems include the use of I/O-cache, Read-ahead, and Write-behind Translators. By removing these features that do not fit SSDs which are advantageous for random I/O, we have achieved performance improvements, by up to 255% in the case of 4KB random reads, and by up to 50% in the case of 64KB random reads.

Considerations for Designing an Integrated Write Buffer Management Scheme for NAND-based Solid State Drives (SSD를 위한 쓰기 버퍼와 로그 블록의 통합 관리 고려사항)

  • Park, Sungmin;Kang, Sooyong
    • Journal of Digital Contents Society
    • /
    • 제14권2호
    • /
    • pp.215-222
    • /
    • 2013
  • NAND flash memory-based Solid State Drives (SSD) have lots of merits compared to traditional hard disk drives (HDD). However, random write in SSD is still far slower than sequential read/write and random read. There are two independent approaches to resolve this problem: 1) using part of the flash memory blocks as log blocks, and 2) using internal write buffer (DRAM or Non-Volatile RAM) in SSD. While log blocks are managed by the Flash Translation Layer (FTL), write buffer management has been treated separately from FTL. Write buffer management schemes did not use the exact status of log blocks and log block management schemes in FTL did not consider the behavior of write buffer management scheme. In this paper, we first show that log blocks and write buffer have a tight relationship to each other, which necessitates integrated management of both of them. Since log blocks also can be viewed as another type of write buffer, we can manage both of them as an integrated write buffer. Then we provide three design criteria for the integrated write buffer management scheme which can be very useful to SSD firmware designers.

Design and Fabrication of Ka-band Waveguide Combiner with High Efficiency and High Isolation Characteristics (고효율 및 높은 격리 특성을 갖는 Ka 대역 도파관 결합기 설계 및 제작)

  • Kim, Hyo-Chul;Cho, Heung-Rae;Lee, Ju-Heun;Lee, Deok-Jae;An, Se-Hwan;Lee, Man-Hee;Joo, Ji-Han;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제22권2호
    • /
    • pp.35-42
    • /
    • 2022
  • In this paper, a method to increase the combining efficiency and isolation of the combiner, the core module of SSPA (solid state amplifier), was studied. Specifically, the isolation was secured by matching the common port and the isolation port in the waveguide combiner. The matching structure for matching is in the form of a circular disk and is engraved inside the waveguide combiner. The structure is very simple, so it is possible to secure stable performance. And this structure showed more than 60 times higher critical power performance compared to previous studies, confirming that it is suitable for high output. And by combining 1-stage T-junction and 2, 3 stage MagicT combiner, miniaturization was achieved and the combining efficiency was optimized by reducing the insertion loss. The fabricated waveguide coupler obtained an isolation of 16dB or more and a coupling efficiency of 86.2%.

A Prediction-Based Data Read Ahead Policy using Decision Tree for improving the performance of NAND flash memory based storage devices (낸드 플래시 메모리 기반 저장 장치의 성능 향상을 위해 결정트리를 이용한 예측 기반 데이터 미리 읽기 정책)

  • Lee, Hyun-Seob
    • Journal of Internet of Things and Convergence
    • /
    • 제8권4호
    • /
    • pp.9-15
    • /
    • 2022
  • NAND flash memory is used as a medium for various storage devices due to its high data processing speed with low power consumption. However, since the read processing speed of data is about 10 times faster than the write processing speed, various studies are being conducted to improve the speed difference. In particular, flash dedicated buffer management policies have been studied to improve write speed. However, SSD(solid state disks), which has recently been used for various purposes, is more vulnerable to read performance than write performance. In this paper, we find out why read performance is slower than write performance in SSD composed of NAND flash memory and study buffer management policies to improve it. The buffer management policy proposed in this paper proposes a method of improving the speed of a flash-based storage device by analyzing the pattern of read data and applying a policy of pre-reading data to be requested in the future from NAND flash memory. It also proves the effectiveness of the read-ahead policy through simulation.

Cost-based Optimization of Block Recycling Scheme in NAND Flash Memory Based Storage System (NAND 플래시 메모리 저장 장치에서 블록 재활용 기법의 비용 기반 최적화)

  • Lee, Jong-Min;Kim, Sung-Hoon;Ahn, Seong-Jun;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • 제13권7호
    • /
    • pp.508-519
    • /
    • 2007
  • Flash memory based storage has been used in various mobile systems and now is to be used in Laptop computers in the name of Solid State Disk. The Flash memory has not only merits in terms of weight, shock resistance, and power consumption but also limitations like erase-before-write property. To overcome these limitations, Flash memory based storage requires special address mapping software called FTL(Flash-memory Translation Layer), which often performs merge operation for block recycling. In order to reduce block recycling cost in NAND Flash memory based storage, we introduce another block recycling scheme which we call migration. As a result, the FTL can select either merge or migration depending on their costs for each block recycling. Experimental results with Postmark benchmark and embedded system workload show that this cost-based selection of migration/merge operation improves the performance of Flash memory based storage. Also, we present a solution of macroscopic optimal migration/merge sequence that minimizes a block recycling cost for each migration/merge combination period. Experimental results show that the performance of Flash memory based storage can be more improved by the macroscopic optimization than the simple cost-based selection.

An Empirical Study on Linux I/O stack for the Lifetime of SSD Perspective (SSD 수명 관점에서 리눅스 I/O 스택에 대한 실험적 분석)

  • Jeong, Nam Ki;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제52권9호
    • /
    • pp.54-62
    • /
    • 2015
  • Although NAND flash-based SSD (Solid-State Drive) provides superior performance in comparison to HDD (Hard Disk Drive), it has a major drawback in write endurance. As a result, the lifetime of SSD is determined by the workload and thus it becomes a big challenge in current technology trend of such as the shifting from SLC (Single Level Cell) to MLC (Multi Level cell) and even TLC (Triple Level Cell). Most previous studies have dealt with wear-leveling or improving SSD lifetime regarding hardware architecture. In this paper, we propose the optimal configuration of host I/O stack focusing on file system, I/O scheduler, and link power management using JEDEC enterprise workloads in terms of WAF (Write Amplification Factor) which represents the efficiency perspective of SSD life time especially for host write processing into flash memory. Experimental analysis shows that the optimum configuration of I/O stack for the perspective of SSD lifetime is MinPower-Dead-XFS which prolongs the lifetime of SSD approximately 2.6 times in comparison with MaxPower-Cfq-Ext4, the best performance combination. Though the performance was reduced by 13%, this contributions demonstrates a considerable aspect of SSD lifetime in relation to I/O stack optimization.

A Study on the Performance Measurement and Analysis on the Virtual Memory based FTL Policy through the Changing Map Data Resource (멥 데이터 자원 변화를 통한 가상 메모리 기반 FTL 정책의 성능 측정 및 분석 연구)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • 제9권1호
    • /
    • pp.71-76
    • /
    • 2023
  • Recently, in order to store and manage big data, research and development of a high-performance storage system capable of stably accessing large data have been actively conducted. In particular, storage systems in data centers and enterprise environments use large amounts of SSD (solid state disk) to manage large amounts of data. In general, SSD uses FTL(flash transfer layer) to hide the characteristics of NAND flash memory, which is a medium, and to efficiently manage data. However, FTL's algorithm has a limitation in using DRAM more to manage the location information of NAND where data is stored as the capacity of SSD increases. Therefore, this paper introduces FTL policies that apply virtual memory to reduce DRAM resources used in FTL. The virtual memory-based FTL policy proposed in this paper manages the map data by using LRU (least recently used) policy to load the mapping information of the recently used data into the DRAM space and store the previously used information in NAND. Finally, through experiments, performance and resource usage consumed during data write processing of virtual memory-based FTL and general FTL are measured and analyzed.

Performance analysis and prediction through various over-provision on NAND flash memory based storage (낸드 플래시 메모리기반 저장 장치에서 다양한 초과 제공을 통한 성능 분석 및 예측)

  • Lee, Hyun-Seob
    • Journal of Digital Convergence
    • /
    • 제20권3호
    • /
    • pp.343-348
    • /
    • 2022
  • Recently, With the recent rapid development of technology, the amount of data generated by various systems is increasing, and enterprise servers and data centers that have to handle large amounts of big data need to apply high-stability and high-performance storage devices even if costs increase. In such systems, SSD(solid state disk) that provide high performance of read/write are often used as storage devices. However, due to the characteristics of reading and writing on a page-by-page basis, erasing operations on a block basis, and erassing-before-writing, there is a problem that performance is degraded when duplicate writes occur. Therefore, in order to delay this performance degradation problem, over-provision technology of SSD has been applied internally. However, since over-provided technologies have the disadvantage of consuming a lot of storage space instead of performance, the application of inefficient technologies above the right performance has a problem of over-costing. In this paper, we proposed a method of measuring the performance and cost incurred when various over-provisions are applied in an SSD and predicting the system-optimized over-provided ratio based on this. Through this research, we expect to find a trade-off with costs to meet the performance requirements in systems that process big data.

A Cache buffer and Read Request-aware Request Scheduling Method for NAND flash-based Solid-state Disks (캐시 버퍼와 읽기 요청을 고려한 낸드 플래시 기반 솔리드 스테이트 디스크의 요청 스케줄링 기법)

  • Bang, Kwanhu;Park, Sang-Hoon;Lee, Hyuk-Jun;Chung, Eui-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권8호
    • /
    • pp.143-150
    • /
    • 2013
  • Solid-state disks (SSDs) have been widely used by high-performance personal computers or servers due to its good characteristics and performance. The NAND flash-based SSDs, which take large portion of the whole NAND flash market, are the major type of SSDs. They usually integrate a cache buffer which is built from DRAM and uses the write-back policy for better performance. Unfortunately, the policy makes existing scheduling methods less effective at the I/F level of SSDs Therefore, in this paper, we propose a scheduling method for the I/F with consideration of the cache buffer. The proposed method considers the hit/miss status of cache buffer and gives higher priority to the read requests. As a result, the requests whose data is hit on the cache buffer can be handled in advance and the read requests which have larger effects on the whole system performance than write requests experience shorter latency. The experimental results show that the proposed scheduling method improves read latency by 26%.