• Title/Summary/Keyword: solid-electrolyte

Search Result 701, Processing Time 0.026 seconds

Fabrication and Characterization of Thin Film Supercapacitor using $WO_3$ ($WO_3$를 이용한 박막형 슈퍼캐패시터의 제작 및 특성 평가)

  • 신호철;신영화;임재홍;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.575-578
    • /
    • 2000
  • In this work, all solid-state thin film supercapacitor(TFSC) was fabricated using tungsten trioxide (WO$_3$) with a structure WO$_3$/LiPON/WO$_3$/Pt/TiO$_2$/Si (substrate). After TiO$_2$ was deposited on Si(100) wafer by d.c. reactive sputtering, the Pt current collector films were grown on TiO$_2$glue layer without breaking vacuum by d.c. sputtering. Fabrication conditions of WO$_3$ thin film were such that substrate temperature, working pressure, gas ratio of $O_2$/Ar and r.f. power were room temperature, 5 mTorr, 20% (O$_2$(8sccm)/Ar(32sccm)) and 200W, respectively. LiPON electrolyte film were grown on the WO$_3$ film using r.f. magnetron sputtering at room temperature. The XRD pattern of the as-deposited WO$_3$ thin film were shown no crystalline peak (amorphous). The SEM image of as-deposited WO$_3$ thin film showed that the surface is smooth and uniform. The capacitiy of as-fabricated TFSC was 0$\times$10$^{-2}$ F/$\textrm{cm}^2$-${\mu}{\textrm}{m}$.

  • PDF

Improved Uniformity of Resistive Switching Characteristics in Ge0.5Se0.5-based ReRAM Device Using the Ag Nanocrystal (Ag Nanocrystal이 적용된 Ge0.5Se0.5-based ReRAM 소자의 Uniformity 특성 향상에 대한 연구)

  • Chung, Hong-Bay;Kim, Jang-Han;Nam, Ki-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.491-496
    • /
    • 2014
  • The resistive switching characteristics of resistive random access memory (ReRAM) based on amorphous $Ge_{0.5}Se_{0.5}$ thin films have been demonstrated by using Ti/Ag nanocrystals/$Ge_{0.5}Se_{0.5}$/Pt structure. Ag nanocrystals (Ag NCs) were spread on the amorphous $Ge_{0.5}Se_{0.5}$ thin film and they played the role of metal ions source. As a result, comparing the conventional Ag/$Ge_{0.5}Se_{0.5}$/Pt structure, this Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt ReRAM device exhibits the highly uniform bipolar resistive switching (BRS) characteristics, such as the operating voltages, and the resistance values. At the same time, a stable DC endurance(> 100 cycles), and the excellent data retention (> $10^4$ sec) properties were found from the Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt structured ReRAM device.

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Crystallization and Electrical properties of $CuO-P_2O_5-V_2O_5$ Glass for solid state Electrolyte (고체 전해질용 $CuO-P_2O_5-V_2O_5$ 유리의 결정화와 전기 전도도)

  • Son, Myung-Mo;Lee, Heon-Soo;Chun, Yon-Soo;Gu, Hal-Bon;Lee, Sang-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.934-937
    • /
    • 2003
  • Glasses in the system $CuO-P_2O_5-V_2O_5$ were prepared by a press-quenching method on the copper plate. The glass-ceramics from these glasses were obtained by post-heat treatment, and the crystallization behavior and DC conductivities were determined. The conductivities of the glasses were range from $10^{-6}s.Cm^{-1}$ at room temperature, but the conductivities of the glass-ceramics were $10^{-3}s.Cm^{-1}$ increased by $10^3$ order. The crystalline product in the glass-ceramics was $CuV_2O_6$. Heat-treatment conditions influenced the crystal growth of $CuV_2O_6$ and conductivity. The linear relationship between in (${\sigma}T$) and $T^{-1}$ suggested that the electrical conduction in the present glass-ceramics would be due to a small polaron hopping(SPH) mechanism.

  • PDF

Analysis of Surface and Thin Films Using Spectroscopic Ellipsometry (Spectroscopic Ellipsometry를 이용한 표면 및 박막의 분석)

  • 김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.73-86
    • /
    • 1990
  • The technique of Spectroscopic Ellipsometry (SE) has been examined with emphasis on its inherent sensitivity to the existence of thin films or surface equivalents. A brief review of related theories like the Fresnel reflection coefficients, the effect of a multilayer upon reflectivities, together with the validity of the effective medium theory and the modelling procedure, is followed by a short description of the experimental setup of a rotating polarizer type SE as well as the necessful expressions which lead to tan and cos. Out of its numerous, successful applications, a few are exampled to convince a reader that SE can be applied to a variety of research fields related to surface, interface and thin films. Specifically, those are adsorption and/or desorption on metals or semiconductors, oxidation process, formation of passivation layers on an electrode, thickness determination, interface between semiconductor and its oxide, semiconductor heterojunctions, surface microroughness, void distribution of dielectric, optical thin films, depth profile of multilayered samples, in-situ or in-vitro characterization of a solid surface immersed in electrolyte during electrochemical, chemical, or biological treatments, and so on. It is expected that the potential capability of SE will be widely utilized in a very near future, taking advantage of its sensitivity to thin films or surface equivalents, and its nondestructive, nonperturbing characteristics.

  • PDF

Flexible Energy-storage Devices: Maneuvers and Intermediate Towards Multi-functional Composites

  • Son, Ji Myeong;Oh, Il Kwon
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.355-364
    • /
    • 2018
  • Flexible energy-storage devices (FESDs) have been studied and developed extensively over the last few years because of demands in various fields. Since electrochemical performance and mechanical flexibility must be taken into account together, different framework from composition of conventional energy-storage devices (ESDs) is required. Numerous types of electrodes have been proposed to implement the FESDs. Herein, we review the works related to the FESDs so far and focus on free-standing electrodes and, especially substrate-based ones. The way to utilize carbon woven fabric (CF) or carbon cloth (CC) as flexible substrates is quite simple and intuitive. However, it is meaningful in the point of that the framework exploiting CF or CC can be extended to other applications resulting in multifunctional composites. Therefore, summary, which is on utilization of carbon-based material and conductive substrate containing CF and CC for ESDs, turns out to be helpful for other researchers to have crude concepts to get into energy-storage multi-functional composite. Moreover, polymer electrolytes are briefly explored as well because safety is one of the most important issues in FESDs and the electrolyte part mainly includes difficult obstacles to overcome. Lastly, we suggest some points that need to be further improved and studied for FESDs.

Research on Risk Assessment of Lithium-ion Battery Manufacturing Process Considering Cell Materials (셀소재를 고려한 리튬2차전지 제조공정 위험성 평가 방법 연구)

  • Kim, Taehoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.76-87
    • /
    • 2022
  • Lithium-ion batteries (LIBs) have attracted much interest for their high energy density (>150 mAh/g), high capacity, low self-discharge rate, and high coulombic efficiency. However, with the successful commercialization of LIBs, fire and explosion incidents are likely to increase. The thermal runaway is known as the major factor in battery-related accidents that can lead to a series of critical conditions. Considering this, recent studies have shown an increased interest in countering the safety issues associated with LIBs. Although safety standards for LIB use have recently been formulated, little attention has been paid to the safety around the manufacturing process for battery products. The present study introduces a risk assessment method suitable for assessing the safety of the LIB-manufacturing process. In the assessment method, a compensation parameter (Z-factor) is employed to correctly evaluate the process's safety on the basis of the type of material (e.g., metal anode, liquid electrolyte, solid-state electrolytes) utilized in a cell. The proposed method has been applied to an 18650 cell-manufacturing process, and three sub-processes have been identified as possibly vulnerable parts (risk index: >4). This study offers some crucial insights into the establishment of safety standards for battery-manufacturing processes.

Predicting Initial Construction Costs of Electrolysis Hydrogen Production Plants for Building Sustainable Energy Systems (지속 가능한 에너지 시스템 구축을 위한 전기분해 수소 생산 플랜트 초기 건설비용 예측)

  • SUNGWOOK KANG;JOONHEON KIM;JONGHWA PARK;DAEMYEONG CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Hydrogen serves as a clean energy source with potential applications across various sectors including electricity, transportation, and industry. In terms of policy and economic support, governmental policy backing and economic incentives are poised to accelerate the commercialization and expansion of hydrogen energy technologies. Hydrogen energy is set to become a cornerstone for a sustainable future energy system. Additionally, when constructing hydrogen production plants, economic aspects must be considered. The essence of hydrogen production plants lies in the electrolysis of water, a process that separates water into hydrogen and oxygen using electrical energy. The initial capital expenditure (CAPEX) for hydrogen production plants can vary depending on the electrolysis technology employed. This study aims to provide a comprehensive understanding of hydrogen production technologies as well as to propose a method for predicting the CAPEX of hydrogen production plants.

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Improved Performance of Direct Carbon Fuel Cell by Catalytic Gasification of Ash-free Coal (무회분탄 연료의 촉매 가스화에 의한 직접탄소연료전지의 성능 향상)

  • Jin, Sunmi;Yoo, Jiho;Rhee, Young Woo;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.426-431
    • /
    • 2012
  • Carbon-rich coal can be utilized as a fuel for direct carbon fuel cell (DCFC). However, left-behind ash after the electrochemical oxidation may hinder the electrochemical reactions. In this study, we produced ash-free coal (AFC) by thermal extraction and then tested it as a fuel for DCFC. DCFC was built based on solid oxide electrolyte and the electrochemical performance of AFC mixed with $K_2CO_3$ was compared with AFC only. Significantly enhanced power density was found by catalytic steam gasification of AFC. However, an increase of the power density by catalytic pyrolysis was negligible. This result indicated that a catalyst activated the steam gasification reactions, producing much more $H_2$ and thus increasing the power density, compared to AFC only. Results of a quantitative analysis showed much improved kinetics in AFC with $K_2CO_3$ in agreement with DCFC results. A secondary phase of potassium on yttria-stabilized zirconia (YSZ) surface was observed after the cell operation. This probably caused poor long-term behavior of AFC with $K_2CO_3$. A thin YSZ (30 ${\mu}m$ thick) was found to be higher in the power density than 0.9 mm of YSZ.