• Title/Summary/Keyword: solid waste disposal site

Search Result 25, Processing Time 0.02 seconds

WASTE MANAGEMENT IN DECOMMISSIONING PROJECTS AT KAERI

  • Hong Sang-Bum;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.290-299
    • /
    • 2005
  • Two decommissioning projects are carried out at the KAERI (Korean Atomic Energy Research Institute), one for the Korea research reactors, KRR-1 and KRR-2, and another for the uranium conversion plant (UCP). The concept of the management of the wastes from the decommissioning sites was reviewed with a relation of the decommissioning strategies, technologies for the treatment and the decontamination, and the characteristics of waste. All the liquid waste generated from KRR-1 and KRR-2 decommissioning site is evaporated by a solar evaporation facility and all the liquid waste from the UCP is treated together with lagoon sludge waste. The solid wastes from the decommissioning sites are categorized into three groups; not contaminated, restricted releasable and radioactive waste. The not-contaminated waste will be reused and/or disposed at an industrial disposal site, and the releasable waste is stored for the future disposal at the KAERI. The radioactive waste is packed in containers, and will be stored at the decommissioning sites till they are sent to a national repository site. The reduction of the radioactive solid waste is one of the strategies for the decommissioning projects and could be achieved by the repeated decontamination. By the achievement of the minimization strategy, the amount of radioactive waste was reduced and the disposal cost will be reduced, but the cost for manpower, for direct materials and for administration was increased.

  • PDF

Solid Waste Disposal Site Selection in Rural Area: Youngyang-Gun, Kyungpook (농촌지역 쓰레기 매립장 입지선정에 관한 연구 -경상북도 영양군을 사례로-)

  • Park, Soon-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.63-80
    • /
    • 1997
  • This study attempts to establish the criteria of site selection for establishing solid waste disposal facility, to determine optimal solid waste disposal sites with the criteria, and to examine the suitability of the selected sites. The Multi-Criteria Evaluation(MCE) module in Idrisi is used to determine optimal sites for solid waste disposal. The MCE combines the information from several criteria in interval and/or ratio scale to form a single index of evaluation without leveling down the data scale into ordinal scale. The summary of this study is as follows: First, the considerable criteria are selected through reviewing the literature and the availability of data: namely, percent of slope, fault lines, bedrock characteristics, major residential areas, reservoirs of water supply, rivers, inundated area, roads, and tourist resorts. Second, the criteria maps of nine factors have been developed. Each factor map is standardized and multiplies by its weight, and then the results are summed. After all of the factors have been incorporated, the resulting suitability map is multiplied by each of the constraint in turn to "zero out" unsuitable area. The unsuitable areas are discovered in urban district and its adjacencies, and mountain region as well as river, roads, resort area and their adjacency districts. Third, the potential sites for establishing waste disposal facilities are twenty five districts in Youngyang-gun. Five districts are located in Subi-myun Sinam-ri, nine districts in Chunggi-myun Haehwa-ri and Moojin-ri, and eleven districts in Sukbo-myun Posan-ri. The first highest score of suitability for waste disposal sites is shown at number eleven district in Chunggi-myun Moojin-ri and the second highest one is discovered at number twenty one district in Sukbo-myun Posan-ri that is followed by number nine district in Chunggi-myun Haehwa-ri, number seventeen and twenty three in Sukbo-myun Posan-ri, and number two in Subi-myun Sinam-ri. The first lowest score is found in number six district in Chunggi-myun Haehwa-ri, and the second lowest one is number five district in Subi-myun Sinam-ri. Finally, the Geographic Information System (GIS) helps to select optimal sites with more objectively and to minimize conflict in the determination of waste disposal sites. It is important to present several potential sites with objective criteria for establishing waste disposal facilities and to discover characteristics of each potential site as a result of that final sites of waste disposal are determined through considering thought of residents. This study has a limitation of criteria as a result of the restriction of availability of data such as underground water, soil texture and mineralogy, and thought of residents. To improve selection of optimal sites for a waste disposal facility, more wide rage of spatial and non-spatial data base should be constructed.

  • PDF

Applying a GIS to Solid and Hazardous Waste Disposal Site Selection (쓰레기매립장 부지선정을 위한 GIS 활용연구)

  • 김윤종;김원영;유일현;백종학;이현우;류중희
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.2
    • /
    • pp.135-151
    • /
    • 1990
  • Solid and hazardous waste disposal site selection by using GIS(Geographic Information System) is the purpose of this study. The criteria of site selection are usually defined in accordance with geological, cultural and social characteristics. Unadequate adaptation of these criteria in a site selection may cause serious problem of water and soil pollution. The environmental information for extraction of these criteria consist of a lot of data : geology, geomorphology, hydrogeology, engineering geology, cultural and social information.... GIS could be easily applied to construct of this environmental information data base, and carry out cartography simulation using overlay mapping technique(polygon overlay). ARC/INFO(GIS system) was used for these studies, and AML(ARC/INFO Macro Language) in this system provided more variable and effective methods for cartography simulation. TM(Thematic Mapper) images were used for the evaluation of land cover/use in the studied area, by using ERDAS image processing system.

Very Low Level Radioactive Solid Waste Management in CHINA (중국에서의 극저준위 방사성 고체 폐기물 관리)

  • Li, Tingjun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • This paper introduces the policy and regulations on very low level waste (VLLW) management in China. Given the important decommissioning and site restoration program of the old facility, it is considered necessary to create a new disposal facility dedicated to VLLW. Many general design principles are in common with to the disposal facility for low and intermediate level waste (LILW), namely the isolation of the waste by means of a multibarrier system, but using bentonite and/or high density polyethylene membranes instead of the generalized use of concrete barriers. The design of the facility is consistent with the design of disposal facilities for hazardous waste. The engineering design of two VLLW disposal facilities is introduced.

Current treatment and disposal practices for medical wastes in Bujumbura, Burundi

  • Niyongabo, Edouard;Jang, Yong-Chul;Kang, Daeseok;Sung, Kijune
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.211-219
    • /
    • 2019
  • Since improper management practices of solid medical waste (SMW) could potentially result in serious health risks and environmental problems, it is very important to properly treat and dispose of the medical wastes. In this study, current practices of SMW management from storage to final disposal stage in 12 health care facilities (HCFs) of Burundi were investigated using the official government reports. The results showed that 75% and 92% of HCFs used uncovered wheelbarrows and trucks for on-site or off-site SMW transportation, respectively, indicating that most transportation equipment and waste workers are not safely protected. The results also showed that 92.8% of SMW (15,736.4 ton) from all 12 HCFs were inappropriately disposed of through uncontrolled land disposal and incineration. If pharmaceutical wastes and discarded medical plastics (29.5% of SMW) can be separated and treated properly, the treatment costs can be reduced and resource savings can be achieved. Raising awareness of healthcare workers and general public about potential health effects arising from improper SMW management, sufficient financial and human resources for the treatment facilities (especially incinerators), and effective regulations and guidelines for transportation and treatment of SWM are some of the major tasks for safe and sustainable medical waste management in Burundi.

Risk Assessment Framework for Safe Disposal and Reuse of Solidified/Stabilized Wastes (고형화 폐기물의 안정적 처분과 재활용을 위한 환경위해성 평가 체계의 연구)

  • Park, Joo-Yang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The key part in risk assessments for disposal sites of solidified/stabilized (S/S) wastes is to predict the contaminant transport from the S/S wastes to the environment under dynamically changing field conditions after characterizing chemical leaching properties of the ash, to evaluate the risk from the predictions, and finally to decide the risk is acceptable. In this paper, a risk assessment framework for disposal and reuse of S/S wastes was developed considering two limiting cases of contaminant leaching. Two types of waste characterization procedures that can determine waste-specific variables for the two limiting cases were developed and verified by applying them to a landfill site of the Municipal Solid Waste incinerator ash solidified/stabilized by cement.

  • PDF

Environmental Impact Assessment for the Waste Landfill Site in the Republic of Korea (한국에서의 매립지에 대한 환경영향평가)

  • Lee, Mu-Choon
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.49-54
    • /
    • 1995
  • Most of the solid waste has been land-filed as an ultimate disposal method in Korea, with might induce many environmental problems by generating odor, particulates and leachate. The landfill site should be considered as a kind of pleasant facility to neighboring residents. Currently, for a landfill site, while the environmental law requires to perform the EIA before the planning. EIA has been performed after the selection of the landfill-site. That might be controversal to the purpose of doing EIA. In this study, the weakness of the EIA for the landfill-site was analysed and was suggested for comprehensive EIA in Korea as well.

  • PDF

The impact of municipal waste disposal of heavy metals on environmental pollution: A case study for Tonekabon, Iran

  • Azizpour, Aziz;Azarafza, Mohammad;Akgun, Haluk
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.175-189
    • /
    • 2020
  • Municipal solid waste disposal is considered as one of the most important risks for environmental contamination which necessitates the development of strategies to reduce destructive consequences on the ecosystem as related especially to heavy metal accumulation. This study investigates heavy metal (i.e., As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) accumulation in the Tonekabon region, NW of Iran that is related to city waste disposal and evaluates the environmental impact in the Caspian Sea coastal region. For this purpose, after performing field studies and collecting 50 soil specimens from 5 sites of the study area, geochemical tests (i.e., inductively coupled plasma mass spectrometry, atomic absorption spectroscopy and x-ray fluorescence) were conducted on the soil specimens collected from the 5 sites (named as Sites A1, A2, A3, A4 and A5) and the results were used to estimate the pollution indices (i.e., geo-accumulation index, normalized enrichment factor, contamination factor, and pollution load index). The obtained indices were utilized to assess the eco-toxicological risk level in the landfill site which indicated that the city has been severely contaminated by Cu, Mn, Ni, Pb and Zn. These levels have been developed along the stream towards the nearshore areas indicating uptake of soil degradation. The heavy metal contamination was classified to range from unpolluted to highly polluted, which indicated serious heavy metal pollution in the study area as related to municipal solid waste disposal in Tonekabon.

Sorption and Migration Studies of Fission Products for Ground Waste Disposal

  • Lee, Sang-Hoon;Chun, Kwan-Sik;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.153-163
    • /
    • 1978
  • The problems of solid waste disposal into the ground in connection with environmental aspects in the vicinity of a site would be very significant, though ground disposal for solid waste is safe and economical method. Studies of the waste-movement and migration of radionuclides (Sr-90 and Cs-137) for the disposal into the ground were performed under laboratory and field conditions. Affinity of the soils for radionuclide solution was higher than that in the acid solution. The sorption of radionuclides by the soils showed a time-dependent reation. The migration rates of radiostrontium and radiocesium were a range of 3.73$\times$10$^{-3}$ to 10.9$\times$10$^{-3}$ cm/day. The nuclides in the soil migrate much more slowly than the water, probably due to its high exchange capacity. The observed distribution of tritium was compared with that calculated by a mathematical model based on diffusivity. This study suggests that the tritiated water can be used to trace the movement of ground water.

  • PDF

Integrating approach to size and site at a sanitary landfill in Selangor state, Malaysia

  • Younes, Mohammad Khairi;Basri, Noor Ezlin Ahmad;Nopiaha, Zulkifli Mohammad;Basri, Hassan;Abushammala, Mohammed F.M.;Maulud, Khairul Nizam Abdul
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.268-276
    • /
    • 2015
  • Solid waste production increases due to population and consumption increments. Landfill is the ultimate destination for all kinds of municipal solid waste; and is the most convenient waste disposal method in developing countries. To minimize investment and operational costs and society's opposition towards locating landfills nearby, proper landfill sizing and siting are essential. In this study, solid waste forecasting using Autoregressive Integrating Moving Average (ARIMA) was integrated with government future plans and waste composition to estimate the required landfill area for the state of Selangor, Malaysia. Landfill siting criteria were then prioritized based on expert's preferences. To minimize ambiguity and the uncertainty of the criteria prioritizing process, the expert's preferences were treated using integrated Median Ranked Sample Set (MRSS) and Analytic Hierarchy Process (AHP) models. The results show that the required landfill area is 342 hectares and the environmental criteria are the most important; with a priority equal to 48%.