• 제목/요약/키워드: solid solution hardening

검색결과 76건 처리시간 0.019초

고경도 철계 장갑재의 미세조직과 기계적 특성 분석 (Microstructure and Mechanical Properties of the High-Hardness Armor Steels)

  • 이지민;한종주;송영범;함진희;김홍규;황병철
    • 한국재료학회지
    • /
    • 제28권8호
    • /
    • pp.459-465
    • /
    • 2018
  • This paper presents a study of the microstructure and mechanical properties of commercial high-hardness armor (HHA) steels tempered at different temperatures. Although the as-received specimens of all the steels exhibit a tempered martensite structure with lath type morphology, the A steel, which has the smallest carbon content, had the lowest hardness due to reduced solid solution hardening and larger lath thickness, irrespective of tempering conditions. As the tempering temperature increases, the hardness of the steels steadily decreases because dislocation density decreases and the lath thickness of martensite increases due to recovery and over-aging effects. When the variations in hardness plotted as a function of tempering temperature are compared with the hardness of the as-received specimens, it seems that the B steel, which has the highest yield and tensile strengths, is fabricated by quenching, while the other steels are fabricated by quenching and tempering. On the other hand, the impact properties of the steels are affected by specimen orientation and test temperature as well as microstructure. Based on these results, the effect of tempering on the microstructure and mechanical properties of commercial high-hardness armor steels is discussed.

초기균열을 가진 판의 최종파괴 강도해석 (Ultimate Fracture Strength Analysis of Initially Cracked Plate)

  • 백점기;서흥원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.133-138
    • /
    • 1991
  • The aim of the present paper is to develop a computer program predicting ultimate fracture strength of initially cracked structure under monotonically increasing external loads. For this purpose, two kinds of 3-D isoparametric solid elements, one 6-node wedge element and another 8-node brick element are formulated along the small deformation theory. Plasticity in the element is checked using von Mises' yield criterion. Elasto-plastic stiffness matrix of the element is calculated taking account of strain hardening effect. If the principal strain at crack tip which is one nodal point exceeds the critical strain dependin on the material property, crack tip is supposed to be opened and the crack tip node which was previously constrained in the direction perpendicular to the crack line is released. After that, the crack lay be propagated to the adjacent node. Once a crack tip node is fractured, the energy of the newly fractured node should be released which is to be absorbed by the remaining part. The accumulated reaction force which was carried by the newly fractured node so far is then applied in the opposite direction. During the action of crack tip relief force, since unloading may be occured in the plastic element, unloading check should be made. If a plastic element unloads, elastic stress-strain equation is used in the calculation of the stiffness matrix of the element, while for a loading element, elasto-plastic stress-strain equation is continuously used. Verification of the computer program is made comparing with the experimental results for center cracked panel subjected to uniform tensile load. Also some factors affecting ultimate fracture strength of initially cracked plate are investigated. It is concluded that the computer program developed here gives an accurate solution and becomes useful tool for predicting ultimate fracture load of initially cracked structural system under monotonically increasing external loads.

  • PDF

양축 정렬된 Ni 기판의 특성에 미치는 W 첨가의 효과 (The Influence of W Addition on Cube Textured Ni Substrates for YBCO Coated Conductor)

  • 김규태;임준형;김정호;장석헌;김호진;주진호;김찬중;송규정;신형섭
    • Progress in Superconductivity
    • /
    • 제6권1호
    • /
    • pp.64-68
    • /
    • 2004
  • We fabricated cube-textured Ni and Ni-W alloy substrates for coated conductors and characterized the effects of W addition on microstructure, mechanical strength, and magnetic properties of the substrate. Pure Ni and Ni-(2, 3, 5at.%)W alloys were prepared by plasma arc melting, heavily cold rolled and then annealed at various temperatures of $600-1300^{\circ}C$. The texture was evaluated by pole-figure and orientation distribution function (ODF) analysis. Mechanical properties were investigated by micro Vickers hardness and tension test. Ferromagnetism of the substrate was measured by physical property measurement system (PPMS). It was observed that Ni-W substrates had sharp cube texture, and the full-width at half-maximums (FWHMs) of in-plane texture was $^{\circ}$-5.57$4.42^{\circ}$, which is better than that of pure Ni substrate. In addition cube texture of Ni-W substrates was retained at higher temperature up to $1300^{\circ}C$. Microstructural observation showed that the Ni-W substrates had fine grain size and higher mechanical properties than the pure Ni substrate. These improvements are probably due to strengthening mechanisms such as solid solution hardening and/or grain size strengthening. PPMS analysis showed that addition of W effectively reduced saturation magnetization in applied magnetic field and Curie temperature.

  • PDF

BRAZING CHARACTERISTICS BETWEEN CEMENTED CARBIDES AND STEEL USED BY AG-IN BRAZING FILLER

  • Nakamura, Mitsuru;Itoh, Eiji
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.551-554
    • /
    • 2002
  • As a general rule, the brazing process between cemented carbides and steel used by Silver (Ag) type brazing filler. The composition of Ag type filler were used Ag-Cu-Zn-Cd type filler mainly. But, the demand of Cadmium (Cd)-free in Ag type filler was raised recently. The reason why Cd-free in Ag brazing filler were occupied to vaporize as a CdO$_2$ when brazing process, because of Cd element was almost low boiling point of all Ag type filler elements. And, CdO$_2$ was a very harmful element for the human body. This experiment was developed Cd-freeing on Ag type filler that was used Indium (In) instead of Cd element. In this experiment, there were changed from 0 to 5% In addition in Ag brazing filler and investigated to most effective percentage of Indium. As a result, the change of In addition instead of Cd, there was a very useful element and obtained same property only 3% In added specimens compared to Cd 19% added specimens. These specimens were obtained same or more deflective strength. In this case, there were obtained 70 MPa over strength and wide brazing temperature range 650-800 C. A factor of deflective strength were influenced by composition and the shape of $\beta$ phase and between $\beta$ phase and cemented carbides interface. Indium element presented as $\alpha$ phase and non-effective factor directly, but it's occupied to solid solution hardening as a phase. $\beta$ phase were composed 84-94% Cu-Ni-Zn elements mainly. Especially, the presence of Ni element in interface was a very important factor. Influence of condensed Ni element in interface layer was increased the ductility and strength of brazing layer. Therefore, these 3% In added Ag type filler were caused to obtain a high brazing strength.

  • PDF

오스테나이트계 내열강의 크리프 유효응력 해석 (Analysis of Creep Effective Stress in Austenitic Heat Resistant Steel)

  • 남기우;박인덕
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1317-1323
    • /
    • 2002
  • This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni (STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at $650^{\circ}C$, $675^{\circ}C$ and $700^{\circ}C$. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests.

A7003 알루미늄 합금 압출공정의 MLCA 산정기술 (Material Life Cycle Assessment of Extrusion Process of A7003)

  • 조형호;조훈;김병민;김영직
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 제5회 압출 및 인발가공 심포지엄
    • /
    • pp.43-49
    • /
    • 2002
  • A7003 alloy has characteristics of their excellent weldability, high corrosion resistance and superior plastic working however the broadening of application for the alloy has been hampered by the lower extrudability associated by Mg content. For improvement of extrudability and enhanced recovery efficiency during Al scrap recyeling, it has been generally practiced to reduce Mg content in A7003 alloy. Therefore, it is necessary to investigate the influence of Mg content on mechanical strength and extrudability of A7003 alloy. For efficient material processing which has small amounts, life cycle assessment in material processing(MLCA) is evaluated. The quantitative analysis of energy requirements and $CO_2$ emission for production of A7003 extruded bar are estimated with different Mg content and billet pre-heating process (heating source by light oil or LPG). In particular, the estimation of energy requirements was performed within shipping and gating range (except the mining and extraction stages)to investigate the influence of the variables on energy requirements and $CO_2$ emission in detail. As Mg content increased, the flow stress and the extrusion pressure for A7003 alloy increased. It has been thought that an increment in extrusion pressure with increasing Mg content is caused by the solid solution hardening of Mg atoms in the matrix and increment in volume fraction of intermetallic compound, $Mg_2Si$. The extrudability and the tensile strength are equal to, or above that of conventional A 7003 alloy even the content of Mg varied from $1.1wt.\%\;to\;0.5wt.\%$ alloy. This means that minimizing the content of Mg in A7003 alloy can enhance recovery efficiency during Al scrap recycling. It can be quoted that rather than Mg content energy source for billet heating is a prime factor to determine the atmospheric $CO_2$ emission.

  • PDF

The B2-B19-B19' Transformation in Ti-(45-x)Ni-5Cu-xMn (at%) (x = 0.5-2.0) Alloys

  • Jeon, Yeong-Min;Kim, Min-Gyun;Kim, Min-Su;Lee, Yong-Hee;Im, Yeon-Min;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.24-27
    • /
    • 2011
  • Effect of substitution of Mn for Ni on transformation behavior, shape memory characteristics and superelasticity of Ti45Ni-5Cu alloy has been investigated by means of electrical resistivity measurements, X-ray diffraction, thermal cycling tests under constant load and tensile tests. The one-stage B2-B19' transformation occurred when Mn content was 0.5 at%, above which the two-stage B2-B19-B19' transformation occurred. A temperature range where the B19 martensite exists was expanded with increasing Mn content because decreasing rate of Ms (60 K / % Mn) was larger than that of Ms' (40 K / % Mn). Ti-(45-x)Ni-5Cu-xMn alloys were deformed in plastic manner with a fracture strain of 60 % ~ 32 % depending on Mn content. Clear superelasticity was found in fully annealed Ti-(45-x)Ni-5Cu-xMn alloys with Mn content more than 1.0 at%, which was ascribe to a solid solution hardening by substitution of Mn for Ni.

Transformation Behavior of Ti-(45-x)Ni-5Cu-xCr (at%) (x = 0.5-2.0) Shape Memory Alloys

  • Im, Yeon-Min;Jeon, Young-Min;Kim, Min-Su;Lee, Yong-Hee;Kim, Min-Kyun;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.28-31
    • /
    • 2011
  • Transformation behavior and shape memory characteristics of Ti-(45-x)Ni-5Cu-xCr (x=0.5-2.0) alloys have been investigated by means of electrical resistivity measurements, differential scanning calorimetry, X-ray diffraction and thermal cycling tests under constant load. Two-stage B2-B19-B19' transformation occurred in Ti-(45-x)Ni-5Cu-xCr alloys. The B2-B19 transformation was separated clearly from the B19-B19' transformation in Ti-44.0Ni-5Cu-1.0Cr and Ti-43.5Ni-5Cu-1.5Cr alloys. A temperature range where the B19 martensite exists was expanded with increasing Cr content because decreasing rate of Ms (85 K / % Cr) was larger than that of Ms' (17 K / % Cr). Ti-(45-x)Ni-5Cu-xCr alloys were deformed in plastic manner with a fracture strain of 68% ~ 43% depending on Cr content. Substitution of Cr for Ni improves the critical stress for slip deformation in a Ti-45Ni-5Cu alloy due to solid solution hardening.

페라이트/마르텐사이트계 산화물분산강화강의 미세조직 및 샤르피 충격특성에 미치는 코발트 함량의 영향 (Effect of Cobalt Contents on the Microstructure and Charpy Impact Properties of Ferritic/martensitic Oxide Dispersion Strengthened Steel)

  • 권대현;노상훈;이정구
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.311-317
    • /
    • 2020
  • In this study, the effects of Co content on the microstructure and Charpy impact properties of Fe-Cr-W ferritic/martensitic oxide dispersion strengthened (F/M ODS) steels are investigated. F/M ODS steels with 0-5 wt% Co are fabricated by mechanical alloying, followed by hot isostatic pressing, hot-rolling, and normalizing/tempering heat treatment. All the steels commonly exhibit two-phase microstructures consisting of ferrite and tempered martensite. The volume fraction of ferrite increases with the increase in the Co content, since the Co element considerably lowers the hardenability of the F/M ODS steel. Despite the lowest volume fraction of tempered martensite, the F/M ODS steel with 5 wt% Co shows the highest micro-Vickers hardness, owing to the solid solution-hardening effect of the alloyed Co. The high hardness of the steel improves the resistance to fracture initiation, thereby resulting in the enhanced fracture initiation energy in a Charpy impact test at - 40℃. Furthermore, the addition of Co suppresses the formation of coarse oxide inclusions in the F/M ODS steel, while simultaneously providing a high resistance to fracture propagation. Owing to these combined effects of Co, the Charpy impact energy of the F/M ODS steel increases gradually with the increase in the Co content.

테이프 캐스팅법에 의한 MCFC Anode용 Ni-WC 박판 제조 (Sheet fabrication of Ni-WC anode for Molten Carbonate Fuel Cell by Tape Casting Method)

  • 최진영;정성회;장건익
    • 한국재료학회지
    • /
    • 제10권10호
    • /
    • pp.715-720
    • /
    • 2000
  • MCFC 작동온도인 $650^{\circ}C$에서 음극의 creep과 소결에 의한 구조적 변형을 막기 위해 기계적 합금법에 의한 Ni-WC분말을 합금화하여 변형에 대한 저항성을 증대시키고자 하였다. 80시간동안 어트리션 밀링을 실시한 분말은 XRD 분석결과 결정규칙이 파괴된 비정질 상을 보였다. 제조된 분말은 적당한 점도의 슬러리로 제조후 테이프 캐스팅법에 의해 green sheet를 제조하였다. 제조된 박판의 두께는 0.9mm였고, 평균 기공 크기는 $3~5{\mu\textrm{m}}$, 기공율은 55%였다. 소결체의 XRD 분석결과 2차성은 생성되지 않았으며, SEM 및 dot-Mapping image를 통해 Ni matrix 안에 W 입자가 미세하고 균일하게 분포되어 있어 고용강화 및 분산강화를 통해 Ni 음극의 기계적 특성을 향상시킬 것으로 기대된다.

  • PDF