• Title/Summary/Keyword: solid rocket propellant

Search Result 170, Processing Time 0.019 seconds

Performance Analysis of the Nozzleless Booster (무노즐 부스터 성능해석)

  • Kim, Kyungmoo;Khil, Taeock;Ryu, Taeha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.72-82
    • /
    • 2017
  • Nozzleless booster is one of the applicable components for integral rocket ramjet (IRR). In order to predict nozzleless solid booster performance, the simplified theoretical analysis was applied for L/D=5, 6, 7, 9, 11, and 13. Al-HTPB and Zr-HTPB propellant with a high metal content were used to increase the hardness because of the combustion gas flow effect. It was found that the trends between the simplified theoretical analysis and experiments were similar.

Development of Side Jet Thruster with Nozzle Closure Separation Device (고기동 추진기관의 노즐개방형 측추력기 개발)

  • Han, Houkseop;Park, Euiyong;Kim, Dongjin;Son, Youngil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • Side jet thruster using nozzle closure separation device provides a solid rocket with a trajectory shift function. Side jet thruster consists of low combustion temperature propellant, neutral type propellant grain and nozzle closure separation device. If a trajectory shift is required, side jet thrust is generated on the rocket by separating some nozzle closures located in the opposite direction to thrust. After completing trajectory shift, the other nozzle closures located in the thrust direction are separated to cease side jet thrust. The operation process is verified through ground static test. The result in this study can be applied to changing rocket trajectory by controlling side jet thrust through nozzle closure separation.

Ultrasonic Inspection Technology of Defect Detection of Propellant/Liner Debond & Propellant Microcrack (초음파를 이용한 추진제/라이너 미접착 및 추진제 미세 크랙의 결함 검출 기법)

  • Na, Sung-Youb
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • Ultrasonic inspection method is more profitable than X-ray radiographic inspection in cost and effect of defect detection such as debond, damage, and it doesn't need special constructions. The method can also be a possible real time inspection with safety. This report explains 1)the experiment and analysis of ultrasonic property of solid propellant, 2)the inspection methods of propellant/liner debond by inside or outside inspection, and 3)the inspection methods of propellant microcrack by damage. From the results, it is possible to detect the defect of propellant/liner debond by inside or outside inspection. Futhermore, it can be possible to detect the propellant microcrack caused by damage using the ultrasonic attenuation.

The Effect of Radiative Heat Flux on Dynamic Extinction in Metalized Solid Propellants (복사열전달이 고체 추진제의 동적소화에 미치는 영향)

  • Jeong, Ho Geol;Lee, Chang Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.72-79
    • /
    • 2003
  • A numerical calculation was conducted to estimate and to elucidate the role of the radiative heat flux from metal particles(Al, $Al_2O_3$) on the dynamic extinction of solid propellant rocket where the rapid depressurization took place. Anon-linear flame modeling implemented by the residence time modeling for metalized propellant was adopted to evaluate conductive heat flux to the propellant surface. The radiative heat feed back was calculated with the aid of a modified comvustion-flow model as well. The calculation results with the propellant of AP:Al:CTPB=76:10:14 had revealed that the radiative heat flux is approximately 5~6% of total flux at the critical depressurization rate regardless of chamber geometry (open or confined chamber). It was also found that the dynamic extinction in open geometry could be predicted at the depressurization rate about 45% larger with radiative heat feedback than without radiation. Thus, it should be claimed that even a small amount of radiative flux 5~6% could produce a big error in predicting the critical depressurization rate of the metalized propellant combustion.

A Study on the Formulation and Mechanical Properties of AN-based Composite Solid Propellant for an Application to Gas Generators (기체발생기용 질산암모늄 산화제 기반 복합고체추진제의 조성 및 기계적 물성)

  • Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2009
  • A development of a composite solid propellant is carried out for an application to gas generators as an energy source of rocket system. With HTPB as a propellant binder which has 80% of particle loading ratio, a favorable rheology, and moderate curing properties at the range of $-50^{\circ}{\sim}70^{\circ}C$, AN is selected as the first kind of oxidizer having the characteristics of a low flame temperature, minimal particle residual as well as nontoxic products. AP is the second oxidant for ballistic property control. A series of experiments for the improvement of physical properties were conducted and resulted in the propellant formulation having 30% of strain rate at 8 bar of max. stress.

The Study of Combustion, Ignition and Safety Characteristics of HTPE Insensitive Propellant (HTPE 둔감추진제 연소/점화/안전도 특성 연구)

  • Yoo, Ji-Chang;Jung, Jung-Yong;Kim, Chang-Kee;Min, Byung-Sun;Ryu, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.351-355
    • /
    • 2011
  • In this study, 2 kinds of HTPE insensitive propellants composed of HTPE/BuNENA binder, AP, AN and Al were investigated for combustion characteristics, ignition delay time, sensitivity and insensitive properties compared with HTPB propellant. HTPE propellant showed almost same sensitivity results as HTPB propellant, showed 2~3 times higher value than the value of HTPB propellant, ignition delay time respectively, and met the standard criteria, while HTPB propellant failed.

  • PDF

Effect of Combustors and Propellant Parameters on the L* Instability of Solid Rocket Motors (연소실 및 추진제 변화에 따른 고체로켓 모터의 L* 불안정에 관한 연구)

  • Lee, Donghee;Ryu, Seunghyun;Joo, Seongmin;Kim, Junseong;Moon, Heejang;Sung, Honggye;Yang, Juneseo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.30-35
    • /
    • 2015
  • In this paper, a theoretical study of low frequency non acoustic instability, the $L^*$ instability, of a solid rocket motor is investigated. The $L^*$ stability criterion is determined by analysing the $L^*$ stability curves of two very distinct propellants for five different geometrical combustors. The $L^*$ instability of two extreme fuels showed totally different behavior in terms of operating pressure of the combustor. A parametric study on the stability for different chamber volume and different throat area keeping constant $L^*$ is conducted and analyzed. It was found that one of the main parameters, the non-dimensional critical characteristic time, requires an enough margin from the critical $L^*$ stability curve.

Reaction of an Insensitive Munitions(IM) Igniter for Solid Propulsion System (고체 추진기관 둔감화 점화 장치의 반응)

  • Ryu, Byung-Tae;Lee, Do-Hyung;Ryoo, Baek-Neung;Choi, Hong-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.352-358
    • /
    • 2011
  • This paper describes on the study of mitigation technique in which a pyrosensor is automatically sensing the rate of risk of fire or explosion of solid rocket motor exposed to an unexpected fire and makes the rocket motor burn itself safely. SCO test was carried out with a rocket motor loaded with HTPB propellant, in which a thermal pyrosensor igniter was installed. The rocket motor in SCO test was located in an oven at $50^{\circ}C$ for 7 hours. The temperature was regulated to be elevated at the rate of $3.3^{\circ}C$ per hour. Results showed Type V(Burning) reaction in this SCO test.

  • PDF

Internal Flow Characteristics of Simulated Dual Pulse Rocket Motor by Using the Hot Gas and Cold Gas (Hot Gas와 Cold Gas를 이용한 모사 이중펄스 로켓 추진기관의 내부 유동 특성)

  • Cho, Kihong;Park, Jungho;Kim, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Dual pulse rocket motor is a variant of solid rocket motor with two propellant grain separated by a pulse separation device. The major performance of such a rocket motor is influenced by the change in the hole area of pulse separation device to nozzle throat area ratio. In this study, we performed flow analysis to investigate the internal flow characteristics according to the pulse separation device hole area to nozzle throat area ratio change. Gases used flow analysis were used combustion gas of HTPB/AP composite propellant and nitrogen gas. Flow analysis results of the dual pulse rocket motor were validated by comparison with experimental results of pneumatics. Commercial CFD code ANSYS FLUENT 14.5 is used in this study to simulate flow analysis.

A phase transformation model for burning surface in AP/HTPB propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Doh, Young-Dae;Yoo, Ji-Chang;Yoh, Jack Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • In the solid rocket propellant combustion, the dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the surface burning, liquid and gas phases are mixed in the intermediate zone between the propellant and the flame to form micro scale bubbles. The known thickness of the melt layer is approximately 1 micron at $10^5$ Pa. In this paper, we present a model of the melt layer structure and the dynamic motion of the melt front derived from the classical phase field theory. The model results show that the melt layer grows and propagates uniformly according to exp(-1/$T_s$) with $T_s$ being the propellant surface temperature.