• Title/Summary/Keyword: solid removal

Search Result 598, Processing Time 0.029 seconds

Analysis of the operating factors of dissolved air flotation (DAF) process for effluent quality improvement from aquaculture rearing tank (양식장 배출수 수질관리를 위한 용존공기부상 공법의 운전 인자 영향 분석)

  • Ki, Jae-Hong;Kim, Hyoung-Jun;Lee, Ju-Young;Han, Moo-Young;Gang, Hee-Woong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Pollutants in aquaculture system effluent mostly originated from solid wastes including uneaten feed and excreta of cultured species. In this research, DAF(Dissolved Air Flotation) unit is suggested as an integrated solid control unit especially as a form of IIBG(Inline Injection Bubble Generation) process in aquaculture system. Solid removal performance of DAF unit was examined under various operation and salinity conditions with turbidity and suspended solid. Solid waste removal efficiencies were found to be affected by operation conditions including saturator pressure, recycle ratio, coagulant concentration. Solid removal efficiency was higher under higher saturator pressure and recycle ratio under which condition larger number of bubbles is generated. Coagulant is thought to have important role in creating bubble-particle aggregate by showing better removal efficiency with higher concentration. However higher saline water showed less effectiveness in removing solids by DAF(IIBG). Application of DAF(IIBG) process also showed additional effect in phosphate removal and DO(Dissolved Oxygen) supply. Phosphate existed in polluted water was removed up to 46% after treatment, which is thought to attribute to aluminium phosphate precipitation. And DO concentration was found to increase over 50% of initial saturation concentration after the injection of micro-bubbles. Through experiments on solid removal from aquaculture effluent, DAF(IIBG) process is estimated to be effective solid control method. This property can help aquaculture system being installed and operated simply and effectively.

Removal Characteristics of Cu(II) ion in Aqueous Solution by Solid-Phase Extractant Immobilized D2EHPA and TBP in PVC (D2EHPA와 TBP를 PVC에 고정화한 고체상 추출제를 사용한 수용액 중의 Cu(II) 이온 제거특성)

  • Kam, Sang-Kyu;Lee, Song-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Removal characteristics of Cu(II) ions by solid-phase extractant immobilized D2EHPA and TBP in PVC were investigated. Cu(II) ion concentrations in the solution and removal capacity of Cu(II) ion according to operation time were compared. The lower the initial concentration of Cu(II) ion in aqueous solution was, the removal capacity of Cu(II) ion by solid-phase extractant was increased relatively. The bigger the initial concentration of Cu(II) ion was, the removal capacity of Cu(II) ion was increased relatively. The pseudo-second-order kinetics according to operation time was showed more satisfying results than the pseudo-first-order kinetics for the removal velocity of Cu(II) ion. The removal capacity of Cu(II) ion was 0.025 mg/g in aqueous solution of pH 2, but the removal capacity of Cu(II) ion was increased to 0.33 mg/g mg/g in aqueous solution of pH 4 according to increasing pH.

Development of Physical Treatment Technology for Stall Wastewater

  • Oh, In-Hwan;Park, Jeung-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.728-736
    • /
    • 1996
  • Solid/Liquid(S/L) separation is crucial for biological treatment of animal wastewater. Liquid portion from S/L separation has less BOD-load and proper post-strip treatment can be obtained . Screen or declined sieve was normally used to separate the solid parts. For better separating efficiency a vibration and a cylindrical separator were constructed and tested. The results are summarized as follows : Solids removal efficiency and moisture content of separated solid were 15-26% and 85-88%, respectively for the vibration separator. For the cylindrical separator, solid removal efficiency and moisture content of solid were 16-39% and 86-89% , respectively. The greatest amount of drymatter was obtained when operating vibration separator with 10。 inclination and 100% vibrating power. For the cylindrical separator maximum efficiency was obtained with 40rpm and 19 inclination . The vibration and the cylindrical separator have shown 21% and 26% in BOD removal, respectively. These two types of separator were proved to be applicable methods for animal wastewater separation.

  • PDF

Solid Separation and Flotation Characteristics of Livestock Wastewater Using DAF Process (DAF 공정을 이용한 축산폐수의 고형물 분리와 부상특성)

  • Kang, Byong-Jun;Yoo, Seung-Joon;Lee, Se-il;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 2008
  • The series of experiments under the various conditions were carried out to evaluate the feasibility of dissolved air flotation (DAF) as an alternative of conventional gravity sedimentation (CGS) and to investigate the decrease of the loadings following to biological wastewater treatment processes in livestock wastewater system. On the basis of the experiment result between CGS and DAF processes, for the other water quality criteria as well as suspended solid the removal efficiency of DAF process was about 20~25 % better than CGS process on average. In addition, the particle removal efficiency of DAF process became higher in proportion as the increase of air to solid (A/S) ratio and the general wastewater treatment efficiency of DAF process was enough to meet the requirement of loading decrease to following biological process even at low A/S ratio range. Though DAF process is widely known as an solid separation unit, there was not the notable relationship between particle separation efficiency and several pollutant removal efficiencies like $COD_{Cr}$ and nutrients (T-N, T-P). Assume that the $COD_{Cr}$ was removed as the fraction of particle separation in this experiment, the removal efficiency of T-N and T-P were sensitive to removal efficiency of $COD_{Cr}$, especially.

Fundamental study on sustainable treatment system of mine water using magnetized solid catalyst

  • Mukuta, Chisato;Akiyama, Yoko
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • In the mine exploration sites, sustainable treatment system of mine water with energy saving and minimized chemical additives is required. Since most of the mine water contains highly-concentrated ferrous ion, it is necessary to study on the removal method of iron ions. We propose the system consisting of two processes; precipitation process by air oxidation using solid catalyst-modified magnetite and separation process combining gravitational sedimentation and magnetic separation using a permanent magnet. Firstly, in the precipitation process (a former process of the system), we succeeded to prepare solid catalyst-modified magnetite. Air oxidation using solid catalyst-modified magnetite using $Fe_2(SO_4)_3$ as a starting material showed high iron removal capability. Secondly, in the separation process (latter process of the system), solid catalyst-modified magnetite using $Fe_2(SO_4)_3$ as a starting material can be separated by a superconducting bulk magnet and a permanent magnet.

Cobalt ferrite nanotubes and porous nanorods for dye removal

  • Girgis, E.;Adel, D.;Tharwat, C.;Attallah, O.;Rao, K.V.
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • $CoFe_2O_4$ nanotubes and porous nanorods were prepared via a simple one-pot template-free hydrothermal method and were used as an adsorbent for the removal of dye contaminants from water. The properties of the synthesized nanotubes and porous nanorods were characterized by electron diffraction, transmission electron microscopy and x-ray powder diffraction. The Adsorption characteristics of the $CoFe_2O_4$ were examined using polar red dye and the factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. The overall trend followed an increase of the sorption capacity reaching a maximum of 95% dye removal at low pHs of 2-4. An enhancement in the removal efficiency was also noticed upon increasing the contact time between dye molecules and $CoFe_2O_4$ nanoparticles. The final results indicated that the $CoFe_2O_4$ nanotubes and porous nanorods can be considered as an efficient low cost and recyclable adsorbent for dye removal with efficiency 94% for Cobalt ferrite nanotubes and for Cobalt ferrite porous nanorods equals 95%.

Preparation of Solid-Phase Extractant by Immobilizing Di-(2-ethylhexyl)phosphoric Acid (D2EHPA) and Tri-butyl-phosphate (TBP) in Polysulfone and Removal Characteristics of Cu(II) (Polysulfone에 추출제 Di-(2-ethylhexyl)phosphoric acid (D2EHPA)와 tri-butyl-phosphate(TBP)를 고정화한 고체상 추출제의 제조와 Cu(II)의 제거 특성)

  • Kam, Sang-Kyu;Jeon, Jin-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The solid-phase extractant PS-D2EHPA/TBP was prepared by immobilizing two extractants D2EHPA and TBP in polysulfone (PS). The prepared PS-D2EHPA/TBP was characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal of Cu(II) from aqueous solution was investigated in batch system. The experiment data were obeyed the pseudo-second-order kinetic model. Equilibrium data were well fitted by Langmuir model and the removal capacity of Cu(II) by solid extractant PS-D2EHPA/TBP obtained from Langmuir model was 3.11 mg/g at 288 K. The removal capacity of Cu(II) was increased according to increasing pH from 2 to 6, but the removal capacity was decreased below pH 3 remarkably.

Sewage Treatment using Moving Media Complete Mixing Activated Sludge/Solid Contact Process (회전매체를 가진 완전혼합 활성슬러지/Solid Contact 공법을 이용한 하수처리에 관한 연구)

  • 김홍태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.67-75
    • /
    • 1993
  • This study was carried out to investigate the applicability of Solid Contact Process for the improvement of Moving Media Complete Mixing Activated Sludge(MMCMAS) effluents. Laboratory MMCMAS Reactor and MMCMAS/Solid Contact were operated at the hydraulic loading of 122~340 L/m$^2$/d. The conclusions from this study were as follows ; The addition of Solid Contact tank to the MMCMAS reactor has increased the SCOD and SBOD removal efficiencies of 4 to 67% and 2 to 41%, respectively. In addition, the increments of nitrification rates were about 13 to 46%. It was also observed that the addition of Solid Contact tank has greatly increased the organic removal efficiencies at the higher hydraulic loading rates and also decrement of sludge production rates was 0.1 gVSS/gBODrem. It was therefore concluded that the addition of Solid Contact tank could have polished the effluent of MMCMAS at the higher hydraulic loading rates.

  • PDF

Efficiency of a hybrid solid digestion-denitrification column in suspended solid and nitrate removal from recirculating aquaculture system

  • Pungrasmi, Wiboonluk;Chaisri, Ratchadaporn;Malaphol, Ekachai;Powtongsook, Sorawit
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.175-180
    • /
    • 2015
  • This research focused on the solid and nitrate removal efficiency in a solid digestion-denitrification column. The 20 L up-flow column consisted of 18 L acrylic column with 2 L down-comer inlet tube located in the middle. In the first part, the wastewater with high suspended solids from the Tilapia fish tank was applied into the sedimentation unit at 5 variable flow rates i.e., 11.25, 25.71, 60, 105.88 and 360 L/h. The results indicated that the flow rate of 11.25 L/h (0.57 m/h) gave the highest solid removal efficiency of $72.72%{\pm}8.24%$. However, the total suspended solids removal was highest at 360 L/h (18.13 m/h). In the second part, methanol was added as an external organic carbon source for denitrification process in a hybrid column containing settled solids. The COD:N ratios of 0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1 and 6:1 were investigated and compared with control without methanol addition. This experiment was operated at the HRT of 1 h with 450 L wastewater from recirculating aquaculture pond containing 100 mg-N/L sodium nitrate. The results indicated that the COD:N ratio of 3:1 gave the highest nitrate removal efficiency of $33.32%{\pm}21.18%$ with the denitrification rate of 5,102.88 mg-N/day.

Removal of Cl from the Incineration Ash of Domestic Municipal Solid Waste

  • Han, Gi-Chun;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.628-632
    • /
    • 2001
  • The removal rate of Cl from municipal solid waste incineration(MSWI) ash(bottom ash and fly ash) by washing was investigated. The Cl contents in the bottom ash and fly ash were 2.6-3.0% and 25-30% respectively, and KCl, NaCl, CaCIOH and friedel's salt were main components. From the results on the effects of washing time and temperature, the Cl contents in the bottom ash and fly ash were decreased up to 0.3% and 2.0% respectively by using of water as a solvent within 30 min at 2$0^{\circ}C$, 300 rpm of agitation speed and 10 of liquid/solid ratio. It is expected that the removal of Cl from the incineration ash by washing could make use of the ash for a cement raw material and so on.

  • PDF