• Title/Summary/Keyword: solder alloy design

Search Result 10, Processing Time 0.025 seconds

A study on the characteristics of low Pb Sn-5%Pb-1.5%Ag-x%Bi solder alloys (저Pb Sn-5%Pb-1.5%Ag-x%Bi계 솔더 합금의 특성에 관한 연구)

  • 홍순국;주철홍;강정윤;김인배
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.157-166
    • /
    • 1998
  • Recently as environmental pollution caused by Pb has posed a serious threat to the global environment, the trend to regulate the usage of Pb in electronic industry is one the rise. Currently, the solder alloy with high Pb content, Sn-37%Pb, is utilized in the electronic assembly therefore, the objective of this study is to develop an alternative solder alloy for the existing Sn-37%Pb solder alloy. First thing, this work choosed Sn-5%Pb-1.5%Ag, Sn-5%Pb-1.5%Ag-x%Bi(x=1~5%) for candidate solder alloys, and examined their properties such as melting range, wettability, microhardness, tensile property, oxidation behavior and microstructure. Wettability was on the same level of Sn-37%Pb. Dissolution of Pb ion in Sn-5%Pb solder was 0.46ppm. This solder alloy revealed cellular dendrite microstructure $\beta$-Sn matrix, Pb-rich phase, Ag/Sn, and Cu/Sn Intermetallic compounds. The range of solidification temperature was within 3$0^{\circ}C$. Also these alloy displayed higher tensile strength and lower elongation than Sn-37%Pb. The resistance of oxidation in Sn-5%Pb-1.5%Ag solder alloy was superior to that of Sn-37%Pb solder alloy. But that of Sn-5%Pb-1.5%Ag-5%Bi solder alloy was equal to that of Sn-37%Pb solder alloy.

  • PDF

INTERCONNECTION TECHNOLOGY IN ELECTRONIC PACKAGING AND ASSEMBLY

  • Wang, Chunqing;Li, Mingyu;Tian, Yanhong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.439-449
    • /
    • 2002
  • This paper reviews our recent research works on the interconnection technologies in electronic packaging and assembly. At the aspect of advanced joining methods, laser-ultrasonic fluxless soldering technology was proposed. The characteristic of this technology is that the oxide film was removed through the vibration excitated by high frequency laser change in the molten solder droplet. Application researches of laser soldering technology on solder bumping of BGA packages were carried out. Furthermore, interfacial reaction between SnPb eutectic solder and Au/Ni/Cu pad during laser reflow was analyzed. At the aspect of soldered joints' reliability, the system for predicting and analyzing SMT solder joint shape and reliability(PSAR) has been designed. Optimization design method of soldered joints' structure was brought forward after the investigation of fatigue failure of RC chip devices and BGA packages under temperature cyclic conditions with FEM analysis and experimental study. At the aspect of solder alloy design, alloy design method based on quantum was proposed. The macroproperties such as melting point, wettability and strength were described by the electron parameters. In this way, a great deal of the experimental investigations was replaced, so as to realize the design and research of any kinds of solder alloys with low cost and high efficiency.

  • PDF

Estimation of Mechanical Properties of Sn-xAg-0.5Cu Lead-free Solder by Tensile Test (인장시험을 통한 Sn-xAg-0.5Cu 무연 솔더의 기계적 물성평가)

  • Jeong, Jong-Seol;Shin, Ki-Hoon;Kim, Jong-Hyeong
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.41-45
    • /
    • 2011
  • SnAgCu lead-free solder alloy is considered as the best alternative to eutectic tin-lead solder. However, the detailed material properties of SnAgCu solder are not available in public. Hence, this paper presents an estimation of mechanical properties of SnAgCu lead-free solder. In particular, the weight percent of Ag was varied as 1.0wt%, 2.5wt%, 3.0wt%, and 4.5wt% in order to estimate the effect of Ag in the Sn-xAg-0.5Cu ternary alloy system. For this purpose, four types of SnAgCu bars were first molded by casting and then standard specimens were cut out of molded bars. Micro-Vickers hardness, tensile tests were finally performed to estimate the variations in mechanical properties according to the weight percent of Ag. Test results reveal that the higher the weight percent of Ag is, the higher the hardness, yield strength, and ultimate tensile strength become. More material properties will be further investigated in the future work.

The Supplement of Sn/Cu, Plating Solution Affects in Plating Skim Quality of the Plating Product (Sn/Cu 도금액의 보충이 도금제품의 도금피막특성에 미치는 영향)

  • Jeon, Taeg-Jong;Ko, Jun-Bin;Lee, Dong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.112-119
    • /
    • 2009
  • The purpose of this study is to evaluate the evaluation of process yield performed by using Sn & Cu treatment on the surface to optimize process condition for Lead-free solder application. The materials which are used for the New Surface Treatment study are Semi-Dulling plating for high speed Sn/Cu alloy of Soft Alloy GTC-33 Pb free known as "UEMURA Method" and plating substrate is alloy 42.Especially in lead-free plating process, it is important to control plating thickness and Copper composition than Sn/Pb plating. Evaluated and controlled plating thickness $12{\pm}3um$, Copper composition $2{\pm}1%$, plating particle and visual inspection. The optimization of these parameters and condition makes it makes possible to apply Sn/Cu Lead-free solder from Sn/Pb alloy.

A Characteristics of Zn-Al-Cu System Pb-free Solder Alloys for Ultra High Temperature Applications (초고온용 Zn-Al-Cu계 Pb-free 솔더 합금의 특성)

  • Kim Seong-Jun;Na Hye-Seong;Han Tae-Kyo;Lee Bong-Keun;Kang Cung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to investigate the characteristics of pb-free $Zn-(3\~6)\%Al-(1\~6)\%Cu$ solder alloys for ultra high temperature(>573K) which applied to air craft, space satellite, automotive, oil, gas well exploration and data logging of geo-thermal wells. Melting range, solderability, electric resistivity, microstructure and mechanical properties were examined with solder alloys casted in Ar gas atmosphere. $Zn-4\%Al-(1\~3)\%Cu,\;Zn-5\%Al-(2\~4)\%Cu\;and\;Zn-6\%Al-(3\~5)\%Cu$ alloys satisfied the optimum melting range of 643 to 673k for ultra high temperature solder. A melting temperature increased with increasing Cu content, but decreased with increasing Al content. The spreadability was improved with increasing hi content. But the content of Cu had no effect on the spreadability. The electric resistivity was lowered with increasing Al and decreasing Cu content. In all Zn-Al-Cu solder alloys, primary dendritic $\varepsilon$ phase(Zn-Cu), dendritic $\eta$ phase(Zn-Cu-Al), $\alpha(Al-Zn)-\eta$ eutectic and eutectoid phase were observed. The addition of Al increased the volume fraction of eutectic and eutectoid phase and it decreased f phases. Also, the addition of Cu increased slightly the volume fraction of e, the eutectic and eutectoid phases. With increasing total content of Al and Cu, a hardness and a tensile strength were linearly increased, but anelongation was linearly decreased.

Experimental Validation of High Damping Printed Circuit Board With a Multi-layered Superelastic Shape Memory Alloy Stiffener (적층형 초탄성 형상기억합금 보강재 기반 고댐핑 전자기판의 실험적 성능 검증)

  • Shin, Seok-Jin;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.661-669
    • /
    • 2021
  • A mechanical stiffener has been mainly applied on a PCB to secure fatigue life of a solder joint of an electronic components in spaceborne electronics by minimizing bending displacement of the PCB. However, it causes an increase of mass and volume of the electronics. The high damping PCB implemented by multi-layered viscoelastic tapes of a previous research was effective for assuring the fatigue life of the solder joint, but it also has a limitation to decrease accommodation efficiency for the components on the PCB. In this study, we proposed high damping PCB with a multi-layered superelastic shape memory alloy stiffener for spatialminimized, light-weighted, high-integrated structure design of the electronics. To investigate the basic characteristics of the proposed PCB, a static load test, a free vibration test were performed. Then, the high damping characteristic and the design effectiveness of the PCB were validated through a random vibration test.

Alloy Design and Evaluation of Sn-Bi-In-Zn Solder Alloys through Thermodynamic Calculation (무연 솔더 Sn-Bi-In-Zn 합금의 열역학적 설계 및 특성 평가)

  • Yun, Seung-Uk;Lee, Byeong-Ju;Lee, Hyeok-Mo
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.303-309
    • /
    • 1997
  • 기존의 전자 기판에서 땜납으로 사용되고 있는 Sn-Pb계 합금을 대체하기 위한 새로운 합금을 개발하기 위하여 열역학을 이용한 상평형계산을 통해 얻은 다원계 상태도를 바탕으로 적정한 녹는점과 용융구간을 가지는 Sn-Bi-In-Zn계 솔더합금을 설계하였다. 설계된 합금을 제작하여 XRD, DSC및 EDX로 분석하여 상의 확인,조성분석 및 고상점과 액상점 등의 녹음 거동을 확인하였다. 또한 열처리에 따른 미세구조의 변화를 관찰하였고, 이러한 조직변화가 기계적 성질에 미치는 영향을 경도실험과 인장실험을 통해 연구하였다.

  • PDF

Self-Assembling Adhesive Bonding by Using Fusible Alloy Paste for Microelectronics Packaging

  • Yasuda, Kiyokazu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.53-57
    • /
    • 2011
  • In the modern packaging technologies highly condensed metal interconnects are typically formed by highcost processes. These methods inevitably require the precise controls of mutually dependant process parameters, which usually cause the difficulty of the change in the layout design for interconnects of chip to-chip, or chip-to-substrate. In order to overcome these problems, the unique concept and methodology of self-assembly even in micro-meter scale were developed. In this report we focus on the factors which influenced the self-formed bumps by analyzing the phenomenon experimentally. In case of RMA flux, homogenous pattern was obtained in both plain surface and cross-section surface observation. By using RA flux, the phenomena were accelerated although the self-formtion results was inhomogenous. With ussage of moderate RA flux, reaction rate of the self-formation was accelerated with homogeneous pattern.

Design and Fabrication of a Low-cost Wafer-level Packaging for RF Devices

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Choi, Hyun-Jin;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.91-95
    • /
    • 2014
  • This paper presents the structure and process technology of simple and low-cost wafer-level packaging (WLP) for thin film radio frequency (RF) devices. Low-cost practical micromachining processes were proposed as an alternative to high-cost processes, such as silicon deep reactive ion etching (DRIE) or electro-plating, in order to reduce the fabrication cost. Gold (Au)/Tin (Sn) alloy was utilized as the solder material for bonding and hermetic sealing. The small size fabricated WLP of $1.04{\times}1.04{\times}0.4mm^3$ had an average shear strength of 10.425 $kg/mm^2$, and the leakage rate of all chips was lower than $1.2{\times}10^{-5}$ atm.cc/sec. These results met Military Standards 883F (MIL-STD-883F). As the newly proposed WLP structure is simple, and its process technology is inexpensive, the fabricated WLP is a good candidate for thin film type RF devices.