• 제목/요약/키워드: solar wind

검색결과 1,075건 처리시간 0.024초

NUMERICAL CALCULATION OF TWO FLUID SOLAR WIND MODEL

  • KIM S.-J.;KIM K.-S.;MOON Y.-J.;CRO K.-S.;PARK Y. D.
    • 천문학회지
    • /
    • 제37권1호
    • /
    • pp.55-59
    • /
    • 2004
  • We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron($T_e$) and proton($T_p$) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: $T_e$ is $7.4{\times}10^5$ K and density(n) is $1.7 {\times}10^7\;cm^{-3}$ in the corona. At 1 AU $T_e$ is $2.1 {\times} 10^5$ K and n is $0.3 cm^{-3}$, and V is $511 km\;s^{-1}$. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.

Hybrid wind-solar power deployment in India: Green Energy Open Access (GEOA) and Renewable Energy Certificates (REC)

  • Hardik K. Jani;Surendra Singh Kachhwaha;Garlapati Nagababu;Alok Das
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.243-252
    • /
    • 2022
  • The hybrid wind-solar energy concept has a big influence on the spread of wind and solar power projects in India since it combines the benefits of both industries while also providing extra benefits such as resource sharing such as land, infrastructure, and power evacuation systems. Furthermore, while the hybrid policy may reduce certain barriers to the installation of wind and solar energy in India, there are still some issues that must be resolved rapidly in order to ensure a sustainable installation. According to the study's findings, the installation of wind and solar power plants is significantly influenced by energy policy. The wind-solar hybrid energy strategy will also be crucial in the near future for growing the usage of renewable energy sources. Aside from that, the establishment of Green Energy Open Access (GEOA) and the restart of the trading of Renewable Energy Certificates (REC) would promote the quick deployment of standalone and hybrid renewable power projects throughout the nation, enabling it to reach 500 GW of installed non-fossil energy capacity by 2030.

CHARACTERISTIC SOLAR WIND DYNAMICS ASSOCIATED WITH GEOSYNCHRONOUS RELATIVISTIC ELECTRON EVENTS

  • Kim, Hee-Jeong;Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권2호
    • /
    • pp.93-100
    • /
    • 2004
  • We have investigated characteristic solar wind dynamics associated with relativistic electron events at geosynchronous orbit. Most of the events for April, 1999 through December, 2002 are found to be accompanied by a prolonged solar quiet period which is characterized as low solar wind density, weak interplanetary magnetic field (IMF), and fast alfvenic fluctuations in IMF $B_z$. In a typical relativistic event, electron fluxes begin to increase by orders of magnitude when solar wind parameters drop to low values (e.g., $n_{sw}∼5 cm^{-3}$ and |$B_{IMF}$∼5 nT) after sharp peaks. Then the elevated electron fluxes stay at the high level during the solar quiet period. This observation may suggest the following scenario for the occurrence of a geosynchronous relativistic event: (ⅰ) Quiet solar winds can yield a stable and more dipole-like magnetospheric configurations in which the geosynchronous orbit locates well inside the trapping boundary of the energetic electrons. (ⅱ) If a large population of MeV electrons are generated (by whatever acceleration process(es)) in the inner magnetosphere, they can be trapped and effectively accumulated to a high intensity. (ⅲ) The high electron flux can persist for a number of days in the geosynchronous region as long as the solar wind dynamics stays quiet. Therefore the scenario indicates that the occurrence of a relativistic event would be a result of a delicate balance between the effects of electron acceleration and loss. In addition, the sensitive dependence of a relativistic event on the solar wind conditions makes the prediction of solar wind variability as important as understanding of electron acceleration processes in the forecast of a relativistic event.

A Formula for Calculating Dst Injection Rate from Solar Wind Parameters

  • Marubashi, K.;Kim, K.H.;Cho, K.S.;Rho, S.L.;Park, Y.D.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.36.3-37
    • /
    • 2009
  • This is an attempt to improve a formula to predict variations of geomagnetic storm indices (Dst) from solar wind parameters. A formula which is most widely accepted was given by Burton et al. (1975) over 30 years ago. Their formula is: dDst*/dt = Q(t) - Dst*(t)/$\tau$, where Q(t) is the Dst injection rate given by the convolution of dawn-to-dusk electric field generated by southward solar wind magnetic field and some response function. However, they did not clearly specify the response function. As a result, misunderstanding seems to be prevailing that the injection rate is proportional to the dawn-to-dusk electric field. In this study we tried to determine the response function by examining 12 intense geomagnetic storms with minimum Dst < -200 nT for which solar wind data are available. The method is as follows. First we assume the form of response function that is specified by several time constants, so that we can calculate the injection rate Q1(t) from the solar wind data. On the other hand, Burton et al. expression provide the observed injection rate Q2(t) = dDst*/dt + Dst*(t)/$\tau$. Thus, it is possible to determine the time constants of response function by a least-squares method to minimize the difference between Q1(t) and Q2(t). We have found this simple method successful enough to reproduce the observed Dst variations from the corresponding solar wind data. The present result provides a scheme to predict the development of Dst 30 minutes to 1 hour in advance by using the real time solar wind data from the ACE spacecraft.

  • PDF

Simulation of a solar eruption with a background solar wind

  • 이환희;;강지혜
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.46.3-47
    • /
    • 2016
  • We construct a solar eruption model with a background solar wind by performing three-dimensional zero-beta magnetohydrodynamic (MHD) simulation. The initial configuration of a magnetic field is given by nonlinear force-free field (NLFFF) reconstruction applied to a flux emergence simulation. The background solar wind is driven by upflows imposed at the top boundary. We analyzed the temporal development of the Lorentz force at the flux tube axis. Based on the results, we demonstrate that a solar eruption is caused by the imbalance between magnetic pressure gradient force and magnetic tension force. We conclude that this imbalance is produced by a weak but continuously existing solar wind above an active region.

  • PDF

Guide plates on wind uplift of a solar collector model

  • Chung, K.M.;Chang, K.C.;Chen, C.K.;Chou, C.C.
    • Wind and Structures
    • /
    • 제16권2호
    • /
    • pp.213-224
    • /
    • 2013
  • One of the key issues affecting the promotion of solar water heaters in Taiwan is the severe impact of typhoon each year. An experimental study was conducted to investigate the wind uplift characteristic of a solar collector model with and without a guide plate. The guide plate with different lengths and orientations with respect to wind direction was adopted. It is found that the wind uplift of a solar collector is associated with the tilt angle of the flat panel as expected. A cavity formed between the guide plate and the flat panel has a significant effect on the distributions of streamwsie and lateral pressure. Reduction in uplift is essentially coupled with the projected area of a guide plate on the lower surface of the tilt flat panel.

Do Inner Planets Modulate the Solar Wind Velocity at 1 AU from the Sun?

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Quite recently, it has been suggested that the interaction of the solar wind with Mercury results in the variation in the solar wind velocity in the Earth's neighborhood during inferior conjunctions with Mercury. This suggestion has important implications both on the plasma physics of the interplanetary space and on the space weather forecast. In this study we have attempted to answer a question of whether the claim is properly tested. We confirm that there are indeed ups and downs in the profile of the solar wind velocity measured at the distance of 1 AU from the Sun. However, the characteristic attribute of the variation in the solar wind velocity during the inferior conjunctions with Mercury is found to be insensitive to the phase of the solar cycles, contrary to an earlier suggestion. We have found that the cases of the superior conjunctions with Mercury and of even randomly chosen data sets rather result in similar features. Cases of Venus are also examined, where it is found that the ups and downs with a period of ~ 10 to 15 days can be also seen. We conclude, therefore, that those variations in the solar wind velocity turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. At least, one should conclude that the solar wind velocity is not a proper observable modulated by inner planets at the distance of 1 AU from the Sun in the Earth's neighborhood during inferior conjunctions.

태양광, 풍력발전 하이브리드시스템의 전기적 특성 (A study on Electrical Characteristics of Solar Cell - Wind Generator Hybrid system)

  • 홍창우;최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.25-25
    • /
    • 2010
  • In this paper, we have investigated the electrical characteristics for solar-cell and wind power generator hybrid system. The output of electricity for solar cell - wind generator hybrid system were investigated according to the weather conditions at Naju province.

  • PDF

바람에 기인하는 태양광추적구조물의 안정성 해석 (Stability Analysis on Solar Tracker Due to Wind)

  • 김용우;이승열
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.216-222
    • /
    • 2013
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as heavy fall of snow and high speed wind. Therefore, the solar tracker structure should be designed to have sufficient static and dynamic stiffness against such environmental conditions. In this paper, eigenvalue analysis of the solar tracker is carried out by varying the pose of the solar panel and unsteady flow analysis around a single tracker or multi-trackers arranged in a line is performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate whether there exists an instability of resonance due to vortex shedding. Finite element eigenvalue analysis shows that natural frequencies and modes are almost not influenced by the pose of the solar panel and the finite element flow analysis shows that there does not exist periodic vortex shedding due to the flow around single tracker or multiple solar trackers in a line.

Different Responses of Solar Wind and Geomagnetism to Solar Activity during Quiet and Active Periods

  • Kim, Roksoon;Park, Jongyeob;Baek, Jihye;Kim, Bogyeung
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.41.1-41.1
    • /
    • 2017
  • It is well known that there are good relations of coronal hole (CH) parameters such as the size, location, and magnetic field strength to the solar wind conditions and the geomagnetic storms. Especially in the minimum phase of solar cycle, CHs in mid- or low-latitude are one of major drivers for geomagnetic storms, since they form corotating interaction regions (CIRs). By adopting the method of Vrsnak et al. (2007), the Space Weather Research Center (SWRC) in Korea Astronomy and Space Science Institute (KASI) has done daily forecast of solar wind speed and Dst index from 2010. Through years of experience, we realize that the geomagnetic storms caused by CHs have different characteristics from those by CMEs. Thus, we statistically analyze the characteristics and causality of the geomagnetic storms by the CHs rather than the CMEs with dataset obtained during the solar activity was very low. For this, we examine the CH properties, solar wind parameters as well as geomagnetic storm indices. As the first result, we show the different trends of the solar wind parameters and geomagnetic indices depending on the degree of solar activity represented by CH (quiet) or sunspot number (SSN) in the active region (active) and then we evaluate our forecasts using CH information and suggest several ideas to improve forecasting capability.

  • PDF