• Title/Summary/Keyword: solar thermal energy

Search Result 1,235, Processing Time 0.028 seconds

Research on Improvement of Efficiency in Flat Plate Solar Collector by Using Double-Wall Glazing and VIP Insulation (이중투과체 및 VIP복합 단열재 적용 평판 집열기의 성능 향상에 대한 연구)

  • Lee, Doo Ho;Jang, Han Bin;Kim, Young Hak;Do, Kyu Hyung;Lee, Kwang Seob;Lyu, Nam Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.458-465
    • /
    • 2016
  • The purpose of this research is to improve the thermal effiency of solar collector and to quantitatively analyze its performance. Solar thermal systems have been limited to water heating systems mainly using low-temperature range. However, through diverse developments, the application has been extended to medium- and high-temperature fields such as solar heating, solar air conditioning, and solar thermal industrial process. Among the diverse research, this research is specially focusing on enhancement of the thermal performance by minimizing the heat loss coefficient of flat plate solar collectors. In order to do it, a front-side glazing material and a back-side insulation material with high insulated structure is proposed and based on computational analysis, the performance of energy collecting volume of the proposed solar collector is analyzed. The research shows that the proposed structure has the excellent performance at medium- and high-temperature range. therefore, it is expected that the proposed structure can easily replace existing technologies.

The Experimental Research for the Use Characteristics of the Passive and Active type Domestic Solar Hot Water Systems (자연형 및 설비형 태양열 온수기의 이용특성에 대한 실험적 연구)

  • Lee, Dong-Won;Kwak, Hee-You
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.82-88
    • /
    • 2013
  • There are the stirring test and drain test in the daily performance test to determine the thermal performance of a domestic solar hot water system. The drain test is a test that measures the discharge heating rate while drain the hot water from the top of the storage tank and supply the city water to the bottom of the tank. From the perspective of the user, this drain test is more effective than the stirring test. In this study, the thermal performance were compared through the drain test for a passive type and an active type domestic solar hot water systems consisting of the same storage tank and collectors. At this point, a passive type was used the horizontal storage tanks, and an active type was used vertical storage tank. In the drain test, when the hot water drained up to the reference hot water temperature, an active type which have vertical storage tank represents excellent daily performance than a passive type which have horizontal storage tank regardless of weather conditions. The reason for this is because the vertical storage tank is advantageous to thermal stratification in the tank. After the drain test, the residual heat for the horizontal storage tank was much more than the vertical storage tank, but in the next day the amount of discharged heat were less than the those of vertical storage tank neither. Thus, the solar water heating system which have horizontal storage tank should be adopted preheating control method rather than separate using control method when connected with auxiliary heat source device.

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

Study of Stirling Engine Receiver for Solar Thermal Power (태양열 발전용 스터링엔진 흡수기 특성연구)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.227-232
    • /
    • 2008
  • Stirling engine for solar thermal power is an essential part of Dish-Stirling system which generates electricity by using direct normal irradiation and will go into commercialization in near future. For the Stirling engine used in this study is Solo 161 model the capacity of which is 10 kWe and was already used for the Dish-Stirling system of KIER in Jinhae. The receiver of Stirling engine absorbes concentrated solar radiation and transfer it to working fluid of Hydrogen. The working condition of striling engine is high temperature and high pressure to make high efficiency. Therefore the receiver should stand against high temperature of above 800 $^{\circ}C$ and high pressure of max. 150 bar with good performance of heat transfer. The receiver is composed of 78 Inconel tubes of 1/8" with thickness of 0.71 mm and two reserviors which is connected with two cylinders. In order to know the charaterristics of heat transfer of Stirling engine receiver, simulation on the heat transfer of the receiver of Solo 161 is conducted by using CFD code of Fluent. The heat flux on the receiver surface has a shape of Gaussian distribution so, it is necessary to simulate a whole receiver. However, It is difficult and time consuming to simulate the whole receiver that one tube with different heat flux conditions are considered in this study. From the simulation results, heat transfer charateristics of receiver are observed and tube wall and fluid temperature and heat transfer coefficient are obtained and compared with the calculated results from Dittus-Boelter's correlation.

  • PDF

Design and Construction Experiences of 10kWe Dish-type Solar Thermal Power Generation System (Dish형 집광장치 이용 10kWe급 태양열 발전시스템 설계 및 시공 사례)

  • Lee, Sang-Nam;Kang, Yong-Heack;Jo, Dok-Ki;Yu, Chang-Kyun;Yoon, Hwan-Ki;Kim, Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.684-687
    • /
    • 2005
  • KIER has been running a demonstration project for 10kWe solar thermal power generation. the project is to build and operate the first solar thermal power generation system in Korea. For concentrating solar thermal energy $40m^2$ dish type concentrator was adapted and a stirling engine is going to be integrated to the system for power production. At the moment building the dish concentrator including mirror and sun tracking system was completed and it's performance are being closely evaluated. This paper will introduce some detailed designs and construction procedures which we have experienced so far.

  • PDF

Design and Manufacture of Linear Fresnel Reflector Solar Thermal System (선형 프레넬 반사판 태양열 발전시스템의 설계 및 제작)

  • Kim, Haneol;Kim, Jongkyu
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • In this study, design and manufacture of LFR (Linerar Fresnel Reflector) system was performed for solar thermal absorption cooling. The LFR system was designed considering the expansion and convenience to be installed according to the cooling capacity of the applicable building. Twelve LFR modules with a total reflection area of $204m^2$ were installed. The automatic tracking system was applied to track the sun during the daytime.

Computational Heat Transfer Analysis of High Temperature Solar Receiver (수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석)

  • Kim, Tae-Jun;Lee, Ju-Han;Han, Gui-Young;Kang, Yong-Heack;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.22-27
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with 5k Wth Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along with this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

Thermal Performance Study of Various Heat Pipe Working Fluid for Evacuated Tubular Solar Collector (단일 진공관형 집열기 히트파이프 작동유체에 따른 열성능 연구)

  • Joo, Hong-Jin;Kim, Jeong-Bae;Kim, Jong-Bo;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.97-103
    • /
    • 2007
  • This study was carried out to compare the thermal performance and operating characteristics of evacuated tubular solar collector(ETSC) with different working fluid. The evacuated tubular solar collectors with different working fluid of heat pipe were investigated in the same operating condition for a indoor experiment equipment. First, the result of working fluid with Water showed that $F_R({\tau}{\alpha})$ was 0.6636 and $F_RU_L$ was -1.8457 Second, Ethanol showed that $F_R({\tau}{\alpha})$ was 0.6147 and $F_RU_L$ was -0.6365. Third, Flutec-pp9 showed that $F_R({\tau}{\alpha})$ was 0.515 and $F_RU_L$ was -3.2313. Finally MA's showed that $F_R({\tau}{\alpha})$ was 0.6572 and $F_RU_L$ was -2.0086.

Numerical Analysis of Heat Transfer in Multichannel Volumetric Solar Receivers (다채널 체적식 태양열 흡수기에서 열전달 수치해석)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1383-1389
    • /
    • 2011
  • The current study focuses on the consistent analysis of heat transfer in multichannel volumetric solar receivers used for concentrating solar power. Changes in the properties of the absorbing material and channel dimensions are considered in an optical model based on the Monte Carlo ray-tracing method and in a one-dimensional heat transfer model that includes conduction, convection, and radiation. The optical model results show that most of the solar radiation energy is absorbed within a very small channel length of around 15 mm because of the large length-to-radius ratio. Classification of radiation losses reveals that at low absorptivity, increased reflection losses cause reduction of the receiver efficiency, notwithstanding the decrease in the emission loss. As the average temperature increases because of the large channel radius or small mass flow rate, both emission and reflection losses increase but the effect of emission losses prevails.

Thermal Performance Variations of Glass Evacuated Tube Solar Collectors Depending on the Absorber Shape and the Incidence Angle of Solar Ray (흡수관 형상과 일사 각도에 따른 진공관형 태양열 집열기의 성능 변화)

  • Kim Yong;Seo Tae-Beom;Kang Yong-Heack
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.659-668
    • /
    • 2005
  • The thermal performances of glass evacuated tube solar collectors are numerically investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are numerically investigated. Dealing with only collecting tube, the effects of not only the shape of the absorber tube but also the incidence angle of solar irradiation on the thermal performance of the collector are studied because the energy obtained by the absorber can be varied according to the incidence angle of solar radiation. However, the solar irradiation consists of the beam radiation as well as the diffuse radiation. Also, in actual system, the interference of solar irradiation and heat transfer interaction between the tubes should be considered. Therefore, this study considered these effects is carried out experimentally and numerically. The accuracy of the numerical model is verified by experiments. The result shows that the thermal performance of the absorber used a plate fin and U-tube is about $25\%$ better than those of the other models.