• Title/Summary/Keyword: solar cell simulation

Search Result 272, Processing Time 0.036 seconds

The Glass Greenhouse's Lighting Simulation for Ginseng with Solar Cell and LED (태양전지와 LED를 이용한 인삼재배용 유리온실의 조도 시뮬레이션)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.14-19
    • /
    • 2019
  • In this study, the Relux illumination program was used to simulate the optimal lighting design for a glass greenhouse with Si and DSSC solar-cells and LEDs. The results of the daylight simulation show that the optimum conditions were a structure angle of 90o and higher transmittance. The results of the illumination simulation produced a power consumption effect of 5.6 kwh in the summer (42[%] energy savings compared to full LED control) and 7.8 kwh in the winter (58[%] energy savings compared to full LED control). The results suggest that ginseng should be grown in an energy-saving glass greenhouse.

Reliability Assessment of Flexible InGaP/GaAs Double-Junction Solar Module Using Experimental and Numerical Analysis (유연 InGaP/GaAs 2중 접합 태양전지 모듈의 신뢰성 확보를 위한 실험 및 수치 해석 연구)

  • Kim, Youngil;Le, Xuan Luc;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.75-82
    • /
    • 2019
  • Flexible solar cells have attracted enormous attention in recent years due to their wide applications such as portable batteries, wearable devices, robotics, drones, and airplanes. In particular, the demands of the flexible silicon and compound semiconductor solar cells with high efficiency and high reliability keep increasing. In this study, we fabricated a flexible InGaP/GaAs double-junction solar module. Then, the effects of the wind speed and ambient temperature on the operating temperature of the solar cell were analyzed with the numerical simulation. The temperature distributions of the solar modules were analyzed for three different wind speeds of 0 m/s, 2.5 m/s, and 5 m/s, and two different ambient temperature conditions of 25℃ and 33℃. The flexibility of the flexible solar module was also evaluated with the bending tests and numerical bending simulation. When the wind speed was 0 m/s at 25 ℃, the maximum temperature of the solar cell was reached to be 149.7℃. When the wind speed was increased to 2.5 m/s, the temperature of the solar cell was reduced to 66.2℃. In case of the wind speed of 5 m/s, the temperature of the solar cell dropped sharply to 48.3℃. Ambient temperature also influenced the operating temperature of the solar cell. When the ambient temperature increased to 33℃ at 2.5 m/s, the temperature of the solar cell slightly increased to 74.2℃ indicating that the most important parameter affecting the temperature of the solar cell was heat dissipation due to wind speed. Since the maximum temperatures of the solar cell are lower than the glass transition temperatures of the materials used, the chances of thermal deformation and degradation of the module will be very low. The flexible solar module can be bent to a bending radius of 7 mm showing relatively good bending capability. Neutral plane analysis was also indicated that the flexibility of the solar module can be further improved by locating the solar cell in the neutral plane.

Simulation for improvement of thin firm tandem solar cell-ASA (Tandem Cell 박막태양전지의 효율향상을 위한 시뮬레이션 실험-ASA)

  • Choi, Joong-Ho;Lee, Young-Seok;Heo, Jong-Kyu;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.452-453
    • /
    • 2008
  • pin 두 개의 층으로 이루어진 적층형 박막 태양전지를 이용하여 시뮬레이션 하였다. 각 층별 두께를 조절하여 층별 효율을 측정 하였다. 또한 각 층의 도핑 농도를 조절하여 층별 효율을 측정하였다. 그 후 각각 두 개의 층의 최대효율을 측정하였고 동일한 값으로 두 층이 직렬 연결된 태양전지의 효율을 측정하였다. 그 결과 최대 10.14%로 측정 되었다.

  • PDF

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

A study on improvement of amorphous silicon solar cell using i-double layer (i-double layer를 사용한 박막태양전지 특성향상에 관한 연구)

  • Jang, Juyeon;Song, Kyuwan;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.115.1-115.1
    • /
    • 2011
  • 최근 기본적인 pin 구조의 박막 cell 에서 i layer를 최적화 시키는 방안으로 double layer 구조가 많이 연구되고 있다. 본 연구에서는 ASA(Advanced Semicon ductor Analysis) simulation을 이용하여 i-double layer 최적화에 대한 연구를 진행해 보았다. 두께 150/150nm의 i double layer의 band gap 가변을 한 simulation 결과를 보았을 때, p쪽의 band gap이 상승하면서 intrinsic layer 내의 field가 증가하여 recombination center가 감소하였으나 FF의 감소가 있었다. n쪽의 band gap을 상승 시켰을때 n/i 쪽 field 증가로 Voc가 상승되어 초기 효율이 증가하였으나 intrinsic layer내의 field가 감소하여 recombination center가 오히려 증가하였다. 결과적으로 electric field와 효율을 동시에 고려했을 때 두께 300nm, 1.75의 band gap을 가지는 single layer 보다 150/150nm두께에 1.8/1.7 또는 1.8/1.75의 bandgap을 가지는 double layer를 사용하였을 때 보다 높은 효율을 얻을 수 있었다.

  • PDF

Pattern Analysis of Maximum Power Point by means of Solar Cell Module Array Simulation (태양전지 모듈 어레이 시뮬레이션을 이용한 최대전력점 패턴분석)

  • Jeong, Ji-Won;Park, In-Gyu;Hwang, Kuk-Yeon;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • In the paper, a pattern analysis to decide whether the 1st local peak power point near open circuit voltage is the global peak power point or not, in case that the voltage and current at the 1st local peak power point are in a specific range, for Maximum Power Point Tracking on the photo voltaic power conversion system. When a solar cell panel array is shaded partially, multi-local peak power points can occur. That makes it hard to search the global peak power point. Through Tableau analysis using by piecewise linear solar cell model, V-I characteristic of a solar cell panel array circuit when partial shading problem happens, is simulated. The global peak power and the local peak power points is confirmed by simulations. Voltage and current values and patterns of V-I characteristic are analyzed. The generating efficiency of the solar cell panel array is improved, when the solar cell panel array circuit is operated at the power point estimated by setting up specific range.

박형웨이퍼를 사용한 결정질 태양전지의 PC1D를 이용한 최적화

  • Im, Tae-Gyu;Jeong, U-Won;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.38-38
    • /
    • 2009
  • Wafer thickness of crystalline silicon is an important factor which decides a price of solar cell. PC1D was used to fix a condition that is required to get a high efficiency in a crystalline silicon solar cell using thin wafer($150{\mu}m$). In this simulation, base resistivity and emitter doping concentration were used as variables. As a result of the simulation, $V_{oc}$=0.6338(V), $I_{sc}$=5.565(A), $P_{max}$=2.674(W), FF=0.76 and efficiency 17.516(%) were obtained when emitter doping concentration is $5{\times}10^{20}cm^{-3}$, depth factor is 0.04 and sheet resistance is $79.76{\Omega}/square$.

  • PDF

TCAD Simulation을 이용한 LBC Solar Cell의 Local BSF Doping Profile 최적화에 관한 연구

  • An, Si-Hyeon;Park, Cheol-Min;Kim, Seon-Bo;Jang, Ju-Yeon;Park, Hyeong-Sik;Song, Gyu-Wan;Choe, U-Jin;Choe, Jae-U;Jang, Gyeong-Su;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.603-603
    • /
    • 2012
  • 최근에 전면 emitter의 doping profile이 다른 selective emitter solar cell은 실제 제작시단파장 영역에서 많은 gain을 얻을 수 없어 LBC 구조의 태양전지에 관한 연구가 많이 진행되고 있다. 본 연구는 TCAD simulation을 이용하여 후면에 형성되는 locally doped BSF(p++) region의 doping profile의 변화에 따른 태양전지 특성에 관한 연구이다. Al으로 형성되는 local back contact의 doping depth 및 surface concentration에 따른 전기적, 광학적 분석을 통해 주도적인 인자를 분석하고 최적화하였다. 특히 doping depth에 따른 변화보다는 surface concentration의 변화에 따른 특성변화가 주도적으로 나타났다.

  • PDF

Feedback Control of DC-DC Converters for Solar-Cell using DSP

  • Cho, Sung-Rae;Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.127.3-127
    • /
    • 2001
  • In this paper, we present a technique of feedback control for different types of DC-DC converter using single DSP To improve dynamic response due to the variation of input voltage and current from solar cell caused by weather condition, the system is modeled as a hybrid system and simulated by MATLAB. Simulation result and experimental system are also compared with analog feedback control system.

  • PDF

Parameter Estimation of Solar Cell Using a Genetic Algorithm (유전알고리즘을 이용한 태양전지의 매개변수 추정)

  • Son, Yung-Deug;Jin, Gang-Gyoo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.313-316
    • /
    • 2002
  • In this paper, we present an online scheme for parameter estimation of solar cell, based on the model adjustment technique and a genetic algorithm. The ideal diode model and the diode model with series and shunt resistor are used to estimate their parameters. Simulation works using field data in the form of a VI characteristic curve are carried out to demonstrate the effectiveness of the proposed method.

  • PDF