• Title/Summary/Keyword: solar altitude angle

Search Result 31, Processing Time 0.017 seconds

New mathematical approach to determine solar radiation for the southwestern coastline of Pakistan

  • Atteeq Razzak;Zaheer Uddin;M. Jawed Iqbal
    • Advances in Energy Research
    • /
    • v.8 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Solar Energy is the energy of solar radiation carried by them in the form of heat and light. It can be converted into electricity. Solar potential depends on the site's atmosphere; the solar energy distribution depends on many factors, e.g., turbidity, cloud types, pollution levels, solar altitude, etc. We estimated solar radiation with the help of the Ashrae clear-sky model for three locations in Pakistan, namely Pasni, Gwadar, and Jiwani. As these locations are close to each other as compared to the distance between the sun and earth, therefore a slight change of latitude and longitude does not make any difference in the calculation of direct beam solar radiation (BSR), diffuse solar radiation (DSR), and global solar radiation (GSR). A modified formula for declination angle is also developed and presented. We also created two different models for Ashrae constants. The values of these constants are compared with the standard Ashrae Model. A good agreement is observed when we used these constants to calculate BSR, DSR, GSR, the Root mean square error (RMSE), Mean Absolute error (MABE), Mean Absolute percent error (MAPE), and chisquare (χ2) values are in acceptance range, indicating the validity of the models.

Analysis of Slope Characteristics of Solar Power Plants in Gangwon Province based on Geospatial Database (산지 태양광 발전시설의 지형 공간 데이터베이스 구축 및 사면 특성 분석)

  • Kim, Ji-Ho;Song, Ki-Il;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.155-167
    • /
    • 2024
  • In Korea, many solar power generation facilities are being installed in mountainous regions, which cover 70% of the country' area. This study aimed to analyze the slope characteristics of solar power generation facilities installed in such regions, considering the potential for mountain hazards. A database was created for 663 mountainous solar power generation facilities in Gangwon province, including data on area, slope angle, slope direction, altitude, and soil depth. GIS techniques were used to analyze the slope characteristics of these facilities. The area of solar power generation facilities installed in the Gangwon Mountains ranges from 606 to 320,718 m2. We found that a notable number of these facilities have slopes exceeding the permit standards for mountain solar power installations and steep slope criteria. In addition, most facilities are located south, making them vulnerable to landslides. The correlation between soil depth and slope or topographical altitude was found to be quite low.

A Study on the Thermal Response Characteristics of Snow Removing Facilities using Heat Pipe (히트파이프식 제설설비의 열응답 특성에 관한 연구)

  • Lee, Yong-Soo;Jang, Yeong-Suk
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.45-56
    • /
    • 1997
  • The purpose of this research was to study the characteristics of heat transfer of snow removing facilities using heat pipe by experimental method. Heat pipes was constructed a flexible tube connected between evaporator and condenser ends for altitude adjustment of evaporator and it was constituted an internal diameter of 25.4mm, a length of 950mm for heating section and a length of 6000mm for condenser section with copper material for closed system. The results showed that the effect of heat transfer was increased when inclination angle and inlet temperature of heating water increased. Wall temperature response by inclined angle $4.5^{\circ}c-9^{\circ}c$ and working fluid amount 0.96 from to 1.3 times of evaporator volume were better than those of other working fluid and angle.

  • PDF

Design Parameter Analysis of a Solar-Powered, Potential Energy-Storing, Long Endurance UAV (위치에너지를 축적하는 태양동력 장기체공 무인기의 설계 인자 분석)

  • Yang, In-Young;Lee, Bo-Hwa;Chang, Byung-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.927-934
    • /
    • 2011
  • Design parameter analysis is performed for a solar-powered UAV, storing potential energy by climb flight. Parameters related to the flight for saving potential energy, i.e. minimum & maximum altitudes for level flight, gliding & climbing angle, design point speed & altitude, gliding & climbing start time are investigated as design parameters. Weight and size of the UAV are determined using a weight model for the components of the solar-powered UAVs. Produced energy and consumed energy are calculated using these weight and size, yielding the required weight of the battery for a given mission. Relationship between the total weight of the UAV and each parameter is investigated. For the parameters listed above, there exist their ranges only where the design is possible. And there exist optimal values of these parameters minimizing the total weight.

Tracking Method of Inclination-dependent 2-axis Solar Tracker (경사각 종속형 2축식 태양광 추적기의 추적방식)

  • Hong, Jung-Hoon;Kim, Eun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.180-187
    • /
    • 2013
  • The dinger in solar generation is the amount of sunlight which the solar cells absorb. Various types of solar trackers, which rotate themselves in order to make the solar cells face the sun as much as possible, have been developed, and especially the method of tracking with two axes has greatly contributed in increasing the generation amount at work sites. Among theses 2-axis solar trackers, the inclination-dependent 2-axis solar tracker are widely utilized for its advantages of requiring less initial investment and easy maintenance due to a solid structure. However, the drawback is that the generation efficiency is relatively low because of the structural restriction that limits the rotation angle, thus making it less efficient when tracking the sun. This paper proposes a method to increase the generation efficiency of the inclination-dependent 2-axis solar tracker. It also contains the derived equations needed for precise controlling along with a method to keep tracking with the other axis even when one has reached its angle limit. To confirm that the proposed method increases the amount of incidence onto the solar cells, formulas needed for operation on the proposed method and tracking the exact position of the sun are derived, and applying this to the quarterly data of Korea Astronomy and Space Science Institute it shows maximum over 11.1% more incidence compared to existing methods.

Daylighting Performance Nomographs for Toplit Atrium (아트리움의 자연채광 성능 예측용 노모그래프)

  • Kim, Jeong-Tai;Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.45-50
    • /
    • 2003
  • Today, there are increasing evidences that daylight is essential for health, well-being and productivity. One of the strong contributions, which atria can make to advantages in building, is in allowing the use of daylight. This research is to develop nomographs and to evaluate the daylight performances of toplit atria with louvers. For this purpose, the evaluation models of toplit atria with well indexes of 0.5, 1.0 or 2.0 have been selected through the field surveys of atrium buildings in Seoul area. Also, weather data for solar irradiance and luminous efficacy were gathered from the recently conducted previous researches. The computer simulations were performed under clear sky conditions, using the ADELINE program, and various daylight performances were analyzed by the daylight illumination ratio. Analyzing the simulation results, solar altitude, solar azimuth, and louver angle and louver reflectance were found to be important factors affecting the daylight performance of toplit atria. Using these variables, regression equations have been formulated, and the nomographs, which may predict the daylight performances of toplit atria with louvers, were developed. The developed nomographs were validated through comparing the results of nomograph predictions to the results of scale-model experiments.

Assessment of Observation Environments of Automated Synoptic Observing Systems Using GIS and WMO Meteorological Observation Guidelines (GIS와 WMO 기상 관측 환경 기준을 이용한 종관기상관측소 관측환경평가)

  • Kang, Jung-Eun;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.693-706
    • /
    • 2020
  • For ten meteorological observatories running an automated synoptic observing system (ASOS), we classified the observation environments into five classes based on the World Meteorological Organization (WMO) classification guidelines. Obstacles (such as topography and buildings) and land-cover types were the main factors in evaluating the observation environments for the sunshine duration, air-temperature, and surface wind. We used the digital maps of topography, buildings, and land-cover types. The observation environment of the sunshine duration was most affected by the surrounding buildings when the solar altitude angle was low around the sunrise and sunset. The air-temperature observation environment was determined based on not only the solar altitude angle but the distance between the heat/water source and ASOS. There was no water source around the ASOSs considered in this study. Heat sources located near some ASOSs were not large enough to affect the observation environment. We evaluated the surface wind observation environment based on the roughness length around the ASOS and the distance between surrounding buildings and the ASOS. Most ASOSs lay at a higher altitude than the surroundings and the roughness lengths around the ASOSs were small enough to satisfy the condition for the best level.

THE SELECTION OF ALTITUDE AND INCLINATION FOR REMOTE SENSING SATELLITES (원격탐사 위성의 고도와 궤도기울기 결정)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.244-255
    • /
    • 1995
  • The success of a satellites mission is largely depended upon the choice of an appropriate orbit. In the case of a remote sensing satellite which observes the Earth, there exits an optimum solar elevation angle depending on the mission. Therefore a sun-synchronous orbit is suitable for a remote sensing mission. The second-order theory for secular perturbation due to non-symmetric geopotential was described. To design a sun-synchronous orbit, a constraint condition on regression of node was derived. A algorithm to determine the altitude and the inclination was introduced using this constraint condition. As practical examples, the altitudes and the inclinations of four remote sensing satellites were calculated. The ground tracks obtained by the orbit propagator were used to verify the resulting sun-synchronous orbital elements.

  • PDF

A NON-SPHERICAL MODEL FOR THE HOT OXYGEN CORONA OF MARS

  • KIM YONG HA;SON SUJEONG;YI YU;KIM JHOON
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • We have constructed a non-spherical model for the hot oxygen corona of Mars by including the effects of planetary rotation and diurnal variation of the Martian ionosphere. Exospheric oxygen densities are calculated by integrating ensemble of ballistic and escaping oxygen atoms from the exobase over the entire planet. The hot oxygen atoms are produced by dissociative recombination of $O^+_2$, the major ion in the Martian ionosphere. The densities of hot oxygen atoms at the exobase are estimated from electron densities which have been measured to vary with solar zenith angle. Our model shows that the density difference of hot oxygen atoms between noon and terminator is about two orders of magnitude near the exobase, but reduces abruptly around altitudes of 2000 km due to lateral transport. The diurnal variation of hot oxygen densities remains significant up to the altitude of 10000 km. The diurnal variation of the hot oxygen corona should thus be considered when the upcoming Nozomi measurements are analyzed. The non-spherical model of the hot oxy-gen corona may contribute to building sophisticate solar wind interaction models and thus result in more accurate escaping rate of oxygens from Mars.

  • PDF

Some Statistical Characteristics of Substorms Under Northward IMF Conditions (북쪽방향 IMF 조건하에서 발생하는 서브스톰의 통계적 특성)

  • Lee, Ji-Hee;Lee, D.Y.;Choi, K.C.;Jeong, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.451-466
    • /
    • 2009
  • While substorms are known to generally occur under southward IMF conditions, they can sometimes occur even under northward IMF conditions. In this paper, we studied the substorms that occurred in May, 2000 to 2002 to examine some statistical characteristics of the IMF and solar wind associated with northward IMF substorms. We focused on the cases where two or more substorms occurred successively under northward IMF conditions. Also, by checking Sym-H index associated with each of the substorms we determined whether or not there is any association of such northward IMF substorm occurrence with storm times. We also examined statistical properties at geosynchronous altitude in terms of magnetic field dipolarization and energetic particle injection. The following results were obtained. (i) Most of the northward IMF substorms occurred under average solar wind conditions. The majority of them occurred within 2 hrs duration of northward IMF Bz state, but there are also a nonnegligible number of substorms that occurred after a longer duraiton of northward IMF Bz state. (ii) While most of the substorms occurred as isolated from a magnetic storm time, those that occurred in a magnetic storm time show a higher average value of IMF and solar wind than that for the isolated substorms. (iii) About 55% of the substorms were associated with the IMF clock angle that can possibly allow dayside reconnection, and the other 45% were associated with more or less pure northward IMF conditions. Therefore, for the latter cases, the energy input from the solar wind into the magnetosphere should be made by other way than the dayside reconnection. (iv) For most of the substorms, the magnetic field dipolarizations and energetic particle injections at geosynchronous altitude were identified to be generally weak. But, several events indicated strong magnetic field dipolarizations and energetic particle injections.