• Title/Summary/Keyword: soil-pile interface

Search Result 74, Processing Time 0.021 seconds

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

A study on the behaviour of pre-existing single piles to adjacent shield TBM tunnelling from three-dimensional finite element analyses (3차원 유한요소해석을 통한 shield TBM 터널 근접시공에 의한 인접 단독말뚝의 거동에 대한 연구)

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.23-46
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles to adjacent tunnelling by considering the tunnel face pressures and the relative location of pile tips with respect to the tunnel. The numerical modelling has analysed the effect of the face pressures on the pile behaviour. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. The head settlements of the pile (the vertical distance between the pile and the tunnel: 0.25D, where D is the tunnel diameter) directly above the tunnel crown with the face pressure 50% of the in-situ horizontal soil stress at the tunnel springline decreased by about 38% compared to corresponding settlements with a face pressure 25% of the in-situ horizontal soil stress at the tunnel springline. Furthermore, it was found that the smaller the face pressure, the larger the tunnelling-induced ground movements and the axial pile forces were and the higher the degree of the shear strength mobilisation at the pile-soil interface. When the piles were outside the tunnel influence zone, compressive pile forces were developed due to tunnelling. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures and the position of the pile tip relative to the tunnel. In addition, the computed results have been compared with relevant studies previously reported in literature. The behaviour of the piles has been extensively examined and analysed by considering the key features in great detail.

FE Analysis of Rock-Socketed Drilled Shafts Using Load Transfer Method (유한요소해석을 통한 암반에 근입된 현장타설말뚝의 하중전이거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.33-40
    • /
    • 2008
  • The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using the 2D elasto-plastic finite element analysis. Slippage and shear load transfer behavior at the pile-soil interface are investigated by using a user-subroutine interface model (FRlC). It is shown that the coupled soil resistance provides the influence of pile toe settlement as the shaft resistance is increased to an ultimate limit state. The results show that the coupling effect is closely related to the value of pile diameter over rock mass modulus (D/$E_{mass}$) and the ratio of total shaft resistance against total applied load ($R_s$/Q). Through comparisons with field case studies, the 2D numerical analysis reseanably presented load transfer of pile and coupling effect due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

A new design chart for estimating friction angle between soil and pile materials

  • Aksoy, Huseyin Suha;Gor, Mesut;Inal, Esen
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • Frictional forces between soil and structural elements are of vital importance for the foundation engineering. Although numerous studies were performed about the soil-structure interaction in recent years, the approximate relations proposed in the first half of the 20th century are still used to determine the frictional forces. Throughout history, wood was often used as friction piles. Steel has started to be used in the last century. Today, alternatively these materials, FRP (fiber-reinforced polymer) piles are used extensively due to they can serve for long years under harsh environmental conditions. In this study, various ratios of low plasticity clays (CL) were added to the sand soil and compacted to standard Proctor density. Thus, soils with various internal friction angles (${\phi}$) were obtained. The skin friction angles (${\delta}$) of these soils with FRP, which is a composite material, steel (st37) and wood (pine) were determined by performing interface shear tests (IST). Based on the data obtained from the test results, a chart was proposed, which engineers can use in pile design. By means of this chart, the skin friction angles of the soils, of which only the internal friction angles are known, with FRP, steel and wood materials can be determined easily.

A Study on the Behaviour of Single Piles and Pile Groups in Consolidating Ground from Coupled Consolidation Analyses (연계압밀해석을 통한 압밀이 진행 중인 지반에 근입된 단독말뚝 및 군말뚝의 거동연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.15-25
    • /
    • 2016
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of single piles and pile groups in consolidating ground from coupled consolidation analyses. Single piles, $4{\times}4$ and $6{\times}6$ piles inside groups with a spacing of 2.5D were considered, where D is the pile diameter. It has been found that dragload and downdrag on the piles developed rather quickly at the early stage of consolidation. However, when the degree of consolidation was more than 50~75%, only little increases of dragload and downdrag were induced on the pile. Negative Skin Friction (NSF) on the pile in the fill layer was mobilised quickly and remained constant throughout further consolidation. The development of NSF is influenced both by the relative shear displacements at the pile-soil interface and the vertical effective soil stresses during consolidation. The former governed the early stage of consolidation and the latter affected the later stage of consolidation. The vertical effective soil stresses adjacent to the piles were reduced due to the shear stress transfer at the pile-soil interface, in particular for piles inside the pile groups. The range of NSF influence zone concerning the reductions of the effective vertical soil stresses was about 20D measured from the piles in the horizontal direction. On the contrary, the effective horizontal soil stresses acting on the piles were similar to those at the far field.

Evaluation of Shear Load-transfer Barrette Pile in Sandy Soils (사질지반에서의 바렛말뚝의 주면하중전이 거동 평가)

  • Lee, Sang-Rae;Park, Seong-Wan;Lim, Dae-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.5-13
    • /
    • 2010
  • Recently, the use of barrette pile has remarkably increased for high-rise building and bridge foundations. However, relatively few studies have been made for analyzing barrette pile behavior by considering shear load transfer on interface between pile and soils. Therefore, in this paper, an empirically derived equation is proposed. This equation correlates the load transfer curve of barrette piles with the N value from field standard penetration test based on full-scale load tests. The results from all procedures are presented. In addition, the effect of interface on pile-soil is evaluated using 3-D non-linear finite element method and verified with the field data.

Dynamic Analysis of Soil-Pile-Structure Interaction Considering a Complex Soil Profile (복잡한 지반층을 고려한 지반-말뚝-구조물의 상호작용 동해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • The precise analysis of soil-pile-structure interaction requires a proper description of soil layer, pile, and structure. In commonly used finite element simulations, mesh boundaries should match the material discontinuity line. However, in practice, the geometry of soil profiles and piles may be so complex that mesh alignment becomes a wasteful and difficult task. To overcome these difficulties, a different integration method is adopted in this paper, which enables easy integration over a regular element with material discontinuity regardless of the location of the discontinuity line. By applying this integration method, the mesh can be generated rapidly and in a highly structured manner, leading to a very regular stiffness matrix. The influence of the shape of the soil profile and piles on the response is examined, and the validity of the proposed soil-pile structure interaction analysis method is demonstrated through several examples. It is seen that the proposed analysis method can be easily used on soil-pile-structure interaction problems with complex interfaces between materials to produce reliable results regardless of the material discontinuity line.

A Study on the skin friction characteristics of SIP and the estimation of the nonlinear numerical modelling equation (SIP말뚝의 주면마찰특성 및 비선형 수치모델식 산정에 관한 연구)

  • 천병식;임해식;김도형
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.153-160
    • /
    • 2003
  • While the interests on the environmental problem during the construction are increasing, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. Therefore, in Korea, SIP(Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. However, there is no proper design criteria compatible with the ground condition of Korea, so which is most wanted. To improve and supplement this situation, direct shear tests between SIP pile skin interface and soil were executed on various conditions. Through the analysis of test results, skin resistance characteristics of SIP were investigated thoroughly. Also, the nonlinear unit skin resistance capacity model with SM, SC soil were suggested.

  • PDF

Dynamic Shear Behavior Characteristics of PHC Pile-cohesive Soil Ground Contact Interface Considering Various Environmental Factors (다양한 환경인자를 고려한 PHC 말뚝-사질토 지반 접촉면의 동적 전단거동 특성)

  • Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.5-14
    • /
    • 2024
  • PHC piles demonstrate superior resistance to compression and bending moments, and their factory-based production enhances quality assurance and management processes. Despite these advantages that have resulted in widespread use in civil engineering and construction projects, the design process frequently relies on empirical formulas or N-values to estimate the soil-pile friction, which is crucial for bearing capacity, and this reliance underscores a significant lack of experimental validation. In addition, environmental factors, e.g., the pH levels in groundwater and the effects of seawater, are commonly not considered. Thus, this study investigates the influence of vibrating machine foundations on PHC pile models in consideration of the effects of varying pH conditions. Concrete model piles were subjected to a one-month conditioning period in different pH environments (acidic, neutral, and alkaline) and under the influence of seawater. Subsequent repeated direct shear tests were performed on the pile-soil interface, and the disturbed state concept was employed to derive parameters that effectively quantify the dynamic behavior of this interface. The results revealed a descending order of shear stress in neutral, acidic, and alkaline conditions, with the pH-influenced samples exhibiting a more pronounced reduction in shear stress than those affected by seawater.

Investigation of Characteristics and Suggestion of Evaluation Formulae for Skin Resistance of SIP (SIP 말뚝의 주면저항력 특성 고찰 및 산정식 제안)

  • Lim, Hae-Sig;Park, Yong-Boo;Park, Jong-Bae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • Because of the environmental problem during the pile driving, the use of low noise-vibration auger-drilled pilling is increasing to solve noise and vibration problem in pilling. In Korea, SIP (Soil-Cement Injected Precast Pile) method is mainly used as auger-drilled pilling. But, a proper bearing capacity evaluation formula has not been suggested, yet. To improve and supplement this situation, direct shear tests between SIP pile skin interface and soil were executed under various conditions. Through the analysis of test results, skin resistance characteristics of SIP were investigated thoroughly. Also, the maximum unit skin resistance capacity evaluation formulae on SM, SC soil was suggested.

  • PDF