• 제목/요약/키워드: soil-footing systems

검색결과 16건 처리시간 0.021초

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

Parametric study on flexible footing resting on partially saturated soil

  • Singh, Mandeep;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.233-245
    • /
    • 2014
  • Coupled finite element analysis is carried out to study the effect of degree of saturation on the vertical displacements and pore water pressures simultaneously by developing a FORTRAN90 code. The finite element formulation adopted in the present study is based upon Biot's consolidation theory to include partially saturated soils. Numerical methods are applied to a two-dimensional plane strain strip footing (flexible) problem and the effect of variable degree of saturation on the response of excess pore water pressure dissipation and settlement of the footing is studied. The immediate settlement in the case of partly saturated soils is larger than that of a fully saturated soil, the reason being the presence of pore air in partially saturated soils. On the other hand, the excess pore water pressure for partially saturated soil are smaller than those for fully saturated soil.

Analysis of a strip footing on a homogenous soil using element free Galerkin method

  • Ganaiea, Aashiq H.;Sawant, Vishwas A.
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.365-383
    • /
    • 2015
  • Strip footing is an important type of shallow foundations and is commonly used beneath the walls. Analysis of shallow foundation involves the determination of stresses and deformations. Element free Galerkin method, one of the important mesh free methods, is used for the determination of stresses and deformations. Element free Galerkin method is an efficient and accurate method as compared to finite element method. The Element Free Galerkin method uses only a set of nodes and a description of model boundary is required to generate the discrete equation. Strip footing of width 2 m subjected to a loading intensity of 200 kPa is studied. The results obtained are agreeing with the values obtained using analytical solutions available in the literature. Parametric study is done and the effect of modulus of deformation, Poisson's ratio and scaling parameter on deformation and stresses are determined.

A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models

  • Luevanos-Rojas, Arnulfo;Barquero-Cabrero, Jose Daniel;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.417-437
    • /
    • 2017
  • This paper shows a comparative study for design of reinforced concrete boundary combined footings of trapezoidal and rectangular forms supporting two columns and each column transmits an axial load and a moment around of the axis X (transverse axis of the footing) and other moment around of the axis Y (longitudinal axis of the footing) to foundation to obtain the most economical combined footing. The real soil pressure acting on the contact surface of the footings is assumed as a linear variation. Methodology used to obtain the dimensions of the footings for the two models consider that the axis X of the footing is located in the same position of the resultant, i.e., the dimensions is obtained from the position of the resultant. The main part of this research is to present the differences between the two models. Results show that the trapezoidal combined footing is more economical compared to the rectangular combined footing. Therefore, the new model for the design of trapezoidal combined footings should be used, and complies with real conditions.

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

Numerical modelling of soil-foundation interaction by a new non-linear macro-element

  • Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.377-386
    • /
    • 2018
  • This paper focuses on the development of a new non-linear macro-element for the modelling of soil-foundation interaction. Material and geometrical nonlinearities (soil yielding and foundation uplift respectively) are taken into account in the present macro-element to examine the response of shallow foundations under monotonic and cyclic loads. Several applications of soil-foundation systems are studied. The results obtained from these applications are in very favourable agreement with those obtained through other numerical models in the literature.

Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.201-217
    • /
    • 2024
  • This study aims to develop a new model to obtain the minimum area in circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My" in function of σmax (available allowable soil pressure) R (radius of the circular footing), α (angle of inclination where the resultant moment appears), y0 (distance from the center of the footing to the neutral axis measured on the axis where the resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the ground works completely in compression. Three numerical problems are given to determine the lowest area for circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular footings will be of great help to engineers when the column is located on the center or edge of the footing.

기초부 주변토체의 영향을 포함한 지진하중을 받는 교량의 통합된 동적거동분석 (Dynamic Responses of a Whole Bridge System under Earthquakes including the Effect of Foundation nearby Soil-layers)

  • 마호성;박인준;박병진
    • 한국재난관리표준학회지
    • /
    • 제1권2호
    • /
    • pp.79-85
    • /
    • 2008
  • 본 연구는 지진이 발생한 경우, 교량이 위치하고 있는 기초부 주변토체의 영향을 포함하고 그 위에 위치한 교량시스템의 동적거동을 예측하여 결과적으로 전체적 교량시스템의 내진거동을 분석하기 위한 통합된 새로운 방법론(Unified Dynamic Analysis Method)에 대하여 제안하고자 한다. 주변토체의 영향을 포함한 교량의 내진거동을 분석하는 통합된 방법론은 교량의 내진평가시에 적절하게 사용 될 수 있다는 것을 밝혔다. 본 방법론을 이용시 다중입력파에 대한 영향분석도 용이할 수 있다.

  • PDF

On soil-structure interaction models to simulate free vibrations and behavior under seismic loads of a RC building supported by a particular shallow foundation

  • Soelarso Soelarso;Jean-Louis Batoz;Eduard Antaluca;Fabien Lamarque
    • Coupled systems mechanics
    • /
    • 제12권5호
    • /
    • pp.461-479
    • /
    • 2023
  • The paper deals with the finite element modelling of the free vibration and structural behavior of a particular four-floor reinforced concrete structure subjected to static equivalent seismic loads and supported by a shallow foundation system called SNSF (Spider Net System Footing). The two FE models are a simple 2D Matlab model and a detailed 3D model based on solid elastic elements using Altairworks (Hypermesh and Optistruct). Both models can simulate the soil structure interaction. We concentrate on the behavior of a representative cell involving two columns on five levels. The influence of the boundary conditions on the external vertical planes of the domain are duly studied. The Matlab model appears relevant for a primary estimation of frequencies and stiffness of the whole structure under vertical and lateral loads.

Application of Digital Image Correlations (DIC) Technique on Geotechnical Reduced-Scale Model Tests

  • Tong, Bao;Yoo, Chungsik
    • 한국지반신소재학회논문집
    • /
    • 제21권1호
    • /
    • pp.33-48
    • /
    • 2022
  • This paper presents illustrative examples of the application of advanced digital image correlation (DIC) technology in the geotechnical laboratory tests, such as shallow footing test, trapdoor test, retaining wall test, and wide width tensile test on geogrid. The theoretical background of the DIC technique is first introduced together with fundamental equations. Relevant reduced-scale model tests were then performed using standard sand while applying the DIC technique to capture the movement of target materials during tests. A number of different approaches were tried to obtain optimized images that allow efficient tracking of material speckles based on the DIC technique. In order to increase the trackability of soil particles, a mix of dyed and regular sand was used during the model tests while specially devised painted speckles were applied to the geogrid. A series of images taken during tests were automatically processed and analyzed using software named VIC-2D that automatically generates displacements and strains. The soil deformation field and associated failure patterns obtained from the DIC technique for each test were found to compare fairly well with the theoretical ones. Also shown is that the DIC technique can also general strains appropriate to the wide width tensile test on geogrid, It is demonstrated in this study that the advanced DIC technique can be effectively used in monitoring the deformation and strain field during a reduced-scale geotechnical model laboratory test.