DOI QR코드

DOI QR Code

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Received : 2016.04.12
  • Accepted : 2017.06.14
  • Published : 2018.01.20

Abstract

The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

Keywords

References

  1. Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliabilitybased design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., 52(6), 1099-1120. https://doi.org/10.12989/sem.2014.52.6.1099
  2. Al-Ansari, M.S. (2013), "Structural cost of optimized reinforced concrete isolated footing", J. Civ. Environ. Struct. Construct. Arch. Eng., 7(4), 193-200.
  3. Aschheim, M., Hernandez-Montes, E. and Gil-Martin, L.M. (2008), "Design of optimally reinforced RC beam, column, and wall sections", J. Struct. Eng., 134(2), 231-239. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(231)
  4. Awad Z.K. (2013), "Optimization of a sandwich beam design: analytical and numerical solutions", Struct. Eng. Mech., 48(1), 93-102. https://doi.org/10.12989/sem.2013.48.1.093
  5. Barros, M.H.F.M., Martins, R.A.F. and Barros, A.F.M. (2005), "Cost optimization of singly and doubly reinforced concrete beams with EC2-2001", Struct. Multidiscip. Optim., 30(3), 236-242. https://doi.org/10.1007/s00158-005-0516-2
  6. Bordignon, R. and Kripka, M. (2012), "Optimum design of reinforced concrete columns subjected to uniaxial flexural compression", Comput. Concrete, 9(5), 327-340. https://doi.org/10.12989/cac.2012.9.5.327
  7. Bowles, J.E. (2001), Foundation Analysis and Design, McGraw-Hill, New York, U.S.A.
  8. Calabera-Ruiz, J. (2000), Calculo de Estructuras de Cimentacion, Intemac Ediciones, Mexico.
  9. Ceranic, B. and Fryer, C. (2000), "Sensitivity analysis and optimum design curves for the minimum cost design of singly and doubly reinforced concrete beams", Struct. Multidiscip. Optim., 20(4), 260- 268. https://doi.org/10.1007/s001580050156
  10. Das, B.M., Sordo-Zabay, E. and Arrioja-Juarez, R. (2006), Principios de Ingenieria de Cimentaciones, Cengage Learning Latin America, Mexico.
  11. Fleith de Medeiros, G. and Kripka, M. (2013), "Structural Optimization and proposition of pre-sizing parameters for beams in reinforced concrete buildings", Comput. Concrete, 11(3), 253-270. https://doi.org/10.12989/cac.2013.11.3.253
  12. Gonzalez-Cuevas, O.M. and Robles-Fernandez-Villegas, F. (2005), Aspectos Fundamentales del Concreto Reforzado, Limusa, Mexico.
  13. Ha, T. (1993), "Optimum design of unstiffened built-up girders". J. Struct. Eng., 119(9), 2784-2792. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:9(2784)
  14. Hans, G. (1985), "Flexural limit design of column footing", J. Struct. Eng., 111(11), 2273-2287. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:11(2273)
  15. Jarmai, K., Snyman, J.A., Farkas, J. and Gondos, G. (2003), "Optimal design of a welded I-section frame using four conceptually different optimization algorithms", Struct. Optim., 25(1), 54-61. https://doi.org/10.1007/s00158-002-0272-5
  16. Jiang, D. (1983), "Flexural strength of square spread footing", J. Struct. Eng., 109(8), 1812-1819. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(1812)
  17. Jiang, D. (1984), "Closure to "Flexural strength of square spread footing" by Da Hua Jiang (August, 1983)", Struct. Eng., 110(8), 1926-1926.
  18. Kao, C.S. and Yeh, I. (2014), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech., 52(4), 739-753. https://doi.org/10.12989/sem.2014.52.4.739
  19. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
  20. Khajehzadeh, M., Taha M.R. and Eslami, M. (2014), "Multiobjective optimization of foundation using global-local gravitational search algorithm", Struct. Eng. Mech., 50(3), 257-273. https://doi.org/10.12989/sem.2014.50.3.257
  21. Kripka, M., Chamberlain, P. and Zacarias, M. (2013), "Coldformed steel channel columns Optimization with simulated annealing method", Struct. Eng. Mech., 48(3), 383-394. https://doi.org/10.12989/sem.2013.48.3.383
  22. Kurian, N.P. (2005), Design of Foundation Systems, Alpha Science Int'l Ltd., New York, U.S.A.
  23. Leps, M. and Sejnoha, M. (2003), "New approach to optimization of reinforced concrete beams", Comput. Struct., 81(18), 1957-1966. https://doi.org/10.1016/S0045-7949(03)00215-3
  24. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017a), "A mathematical model for dimensioning of square isolated footings using optimization techniques: General case", J. Innov. Comput. Inform. Control, 13(1), 67-74.
  25. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017b), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183. https://doi.org/10.12989/ACD.2017.2.2.169
  26. Luevanos-Rojas, A. (2012a), "A mathematical model for dimensioning of footings square", Rev. Civ. Eng., 3(4), 346-350.
  27. Luevanos-Rojas, A. (2012b), "A mathematical model for the dimensioning of circular footings", Far East J. Math. Sci., 71(2), 357-367.
  28. Luevanos-Rojas, A. (2013), "A mathematical model for dimensioning of footings rectangular", ICIC Express Lett. Part B Appl., 4(2), 269-274.
  29. Luevanos-Rojas, A. (2015), "A new mathematical model for dimensioning of the boundary trapezoidal combined footings", J. Innov. Comput. Cont., 11(4), 1269-1279.
  30. Luevanos-Rojas, A. (2016), "A mathematical model for the dimensioning of combined footings of rectangular shape", Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 39(1), 3-9.
  31. McCormac, J.C. and Brown, R.H. (2013), Design of Reinforced Concrete, John Wiley & Sons, Inc., Mexico.
  32. Ozturk, H.T. and Durmus, A. (2013), "Optimum cost design of RC columns using artificial bee colony algorithm", Struct. Eng. Mech., 45(5), 643-654. https://doi.org/10.12989/sem.2013.45.5.643
  33. Punmia, B.C., Jain, A.K. and Jain, A.K. (2007), Limit State Design of Reinforced Concrete, Laxmi Publications, New York, U.S.A.
  34. Rath, D.P., Ahlawat, A.S. and Ramaswamy, A. (1999), "Shape optimization of RC flexural members", J. Struct. Eng., 125(12), 1439-1445. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1439)
  35. Sahab, M.G., Ashour, A.F. and Toropov, V.V. (2005), "Cost optimization of reinforced concrete flat slab buildings", Eng. Struct., 27(3), 313-322. https://doi.org/10.1016/j.engstruct.2004.10.002
  36. Tiliouine, B. and Fedghouche, F. (2014), "Cost Optimization of reinforced high strength concrete T-sections in flexure", Struct. Eng. Mech., 49(1), 65-80. https://doi.org/10.12989/sem.2014.49.1.065
  37. Tomlinson, M.J. (2008), Cimentaciones, Diseno y Construccion, Trillas, Mexico.
  38. Uzuner, B.A. (2016), Introduction to Foundation Engineering, Derya Bookstore, Trabzon, Turkey.
  39. Varghese, P.C. (2009), Design of Reinforced Concrete Foundations, PHI Learning Pvt. Ltd., New York, U.S.A.
  40. Wang, Y. (2009), "Reliability-based economic design optimization of spread foundation", J. Geotech. Geoenviron., 135(7), 954-959. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000013
  41. Wang, Y. and Kulhawy, F.H. (2008), "Economic design optimization of foundation", J. Geotech. Geoenviron., 134(8), 1097-1105. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1097)
  42. Zou, X., Chan, C., Li, G. and Wang, Q. (2007), "Multi objective optimization for performance-based design of reinforced concrete frames", J. Struct. Eng., 133(10), 1462-1474. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1462)