• Title/Summary/Keyword: soil treatment

Search Result 3,289, Processing Time 0.03 seconds

Effect of Water Stress on Growth of Ligusticum chuanxiong $H_{ORT}$ (토양수분(土壤水分) 불족(不足)이 토천궁(土川芎)의 생육(生育)에 미치는 영향(影響))

  • Kim, Chung-Guk;Kang, Byeung-Hoa;Koh, Mun-Hwan;Jung, Dong-Hee;Seo, Jong-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.4
    • /
    • pp.301-307
    • /
    • 1996
  • The experiment was conducted to clarify the effect of water stress treatment on growth character of Ligusticum chuanxiong Hort. The water stress treatment was imposed artificially on seedling, flowering and rhizome enlargement stage of the plant. The decrease ratio of leaf area compare with control decreased to 24.4% by water stress treatment at seedling stage and to 41.6% at rhizome enlargement stage. The reduction rate of chlorophyll content at the end of water stress treatment was 41.2% at the see­dling stage and no difference at the flowering stage. The chlorophyll content of water stress treatment on seedling and flowering stage was recovered to 95% at harvest time. The ratio of rootlet distribution from top soil to l0cm depth showed maximum to 90% at the seedling stage and to 20cm depth showed max­imum to 6.4% at the rhizome enlargement stage. The dry weight of rootlet was decreased to $19.3{\sim}40.3%$ by water stress treatment. Dry weight of aerial part and underground part of the plant decreased in the order of seedling, flowering, rhizome enlargement and control and the dry weight of aerial part decrease more severely than underground part.

  • PDF

Conservation Treatment and Study on Manufacturing Techniques of Jija Chongtong Gun in the Middle of Joseon Dynasty (조선 중기 제작된 지자총통의 보존처리와 제작기법 연구 -동아대학교 석당박물관 소장 보물 지자총통을 중심으로-)

  • Nam Dohyeon;Park Younghwan;Lee Jaesung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.23-46
    • /
    • 2023
  • The Jija Chongtong Gun, owned by Seokdang Museum of Dong-A University, is a tubedstyle heavy weapon of the battlefield in the mid-Joseon Dynasty and is the second largest firearm after Cheonja Chongtong. The original surface color of the Jija Chongtong Gun was obscured by foreign substances and therefore it was judged that its condition requires the conservation treatment. For stable conservation treatment, gamma ray and X-ray non-destructive transmission surveys was conducted to determine the internal structure and conservation condition. And the component analysis on the material components and surface contaminants of Jija Chongtong Gun was conducted by utilizing the p-XRF component analysis, SEM-EDS component analysis, and XRD analysis. As a result of the gamma-ray and X-ray non-destructive transmission investigation, a large amount of air bubbles was observed inside Jija Chongtong Gun, and the part that appeared to be a chaplet by visual observation was not identified. As a result of gamma-ray and p-XRF component analysis, it was confirmed that Jija Chongtong Gun was bronze made of copper (Cu), tin (Sn), and lead (Pb) alloy. As a result of surface analysis of foreign substances using SEM-EDS, it was confirmed that the main components of white foreign substances were calcium (Ca), sulfur (S), and titanium (Ti). Titanium was presumed to be titanium dioxide (TiO2), the main component of white correction fluid. The red foreign substance was confirmed to contain barium (Ba) as its main ingredient, and was presumed to be barium sulfate (BaSO4), an extender pigment in paint. White and red contaminants, mainly composed of titanium and barium, are presumed to have been deposited on the surface in recent years. The yellow foreign substances were confirmed to be aluminum (Al) and silicon (Si), and were presumed to have originated from soil components. As a result of SEM-EDS and XRD component analysis, the white foreign substance was confirmed to be gypsum (CaS). Based on the results of component analysis, surface impurities were removed, stabilization treatment, and strengthening treatment were performed. During the conservation process, unknown inscriptions Woo (右), Byeong (兵), Sang (上), and Yi (二) were discovered through a portable microscope and precise 3D scanning. In addition, the carving method, depth, and width of the inscription were measured. Woo Byeong Sang is located above Happo Fortress in Changwon, and Yi can be identified as the second hill.

Effect of Carriers on Residue of Wetting Agent Containing Polyoxyethylene Laury Ether, Initial Wetting and Water Movement in Container Media (증량제의 종류가 Polyoxyethylene Laury Ether를 포함한 토양습윤제의 상토 내 잔류성, 상토의 수분 보유 및 이동에 미치는 영향)

  • Choi, Jong Myung;Chung, Hae Joon;Shim, Jai Sung
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.596-601
    • /
    • 2001
  • This study was carried out to determine the effect of base carriers such as zeolite or vermiculite on change of concentration of polyoxyethylene laury ether[$C_{12}H_{25}O(C_{2}H_{4}O)_{3}H$, PLE] and on initial wetting of peat-vermiculite medium in the development of a soil wetting agent using the mixture of PLE and polyoxyethylene+polyppro-pyleneoxide tridecylether (1:1, w/w, CM-1). The concentration of PLE in the treatment of vermiculite was higher than that of zeolite during the period from 2 to 6 weeks. The cumulative concentration of PLE released in the treatment of vermiculite was about $2800mg{\cdot}L^{-1}$ and zeolite was about $2300mg{\cdot}L^{-1}$. The treatments of PLE+CM-1 with zeolite or vermiculite as a carrier were effective in initial water retention of root media having more than 510 mL of water per pot, where as those of $AquaGro^{G}$ and control had 490 mL and 400 mL of water per pot, respectively. In the evaporative water loss, the treatment of zeolite and $AquaGro^{G}$ were faster than that of control and vermiculite. The control treatment had the fastest water movement in and the highest volume of water infiltrating into root medium among all treatments. Increased application rate of PLE+CM-1 did not increase water retention capacity. The treatment of $0.6g{\cdot}L^{-1}$ had the highest evaporative water loss and that of $0.3g{\cdot}L^{-1}$ had the highest amount of water infiltrating into root media among all other treatments.

  • PDF

Difference of Absorption and Anatomical Responses to Protoporphyrinogen Oxidase-Inhibiting Herbicides in Wheat and Barley (Protoporphyrinogen Oxidase 저해형 제초제에 대한 밀과 보리의 흡수 및 해부하적 차이)

  • 구자옥;국용인
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.68-78
    • /
    • 1997
  • Laboratory and greenhouse studies were conducted to determine differential sensitivities on absorption of $^{14}$ C-oxyfluorfen and the anatomical responses in wheat and barley to protoporphyrinogen oxidase-inhibiting herbicides [oxyfluorfen (2-chloro-1- (3-ethoxy -nitrophen-oxy)-4-(trifluoromethyl) benzene, acifluorfen(5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-nitro-benzoic acid), bifenox(methyl-5-(2, 4-dichlorophenoxy)-2-nitrobenzoate) and oxadiazon(5-tert-butyl-3-(2, 4-dichloro-5-isopropoxyphenyl)-1, 3, 4-oxadiazol-2-one)]. I$_{50}$ value of the tolerant wheat cultivars to oxyfluorfen was about 10$^{-4}$ , whereas that of the susceptible barley cultivars was about 10$^{-6}$ M, showing significant difference between the two groups. When foliage were applied with acifluorfen, bifenox or oxadiazon, the oxyfluorfen-tolerant wheat showed less decreased in shoot fresh weight and chlorophyll content than the susceptible barley. Also, when soil-applied with these herbicides test plants showed similar tendency in foliar application. Electrolyte leakage from the tissue treated with these compounds was the more influenced in the barley than the wheat. Malondialdehyde(MDA) production as index of lipid peroxidation was greater in the barley than the wheat by treatment of these compounds. Therefore, the differential sensitivities of wheat and barley to protoporphyrinogen oxidaseinhibiting herbicides was showed by our greenhouse and in vitro experiment. The absorption rates of $^{14}$ C-oxyfluorfen were higher in the barley than the wheat. And this tendency was showed appararitly difference by increase of treatment durations. After the oxfluorfen and oxadiazon treatment, the tolerant wheat did not show the structural damage in leaf surface, but the susceptible barley was damaged in the leaf waxy layer. However, the acifluorfen and bifenox treatment showed no difference between wheat and barley. The anatomical changes by these compounds treatment were not observed in the tolerant wheat but epidermal cell and mesophyll cell were highly broken in the susceptible barley.

  • PDF

Difference in Physiological Responses to Environmental Stress in Protox Inhibitor Herbicide-Resistant Transgenic Rice and Non-transgenic Rice (Protox 저해형 제초제 저항성 형질전환벼와 비형질전환벼의 환경스트레스에 대한 생리적 반응 차이)

  • Yun, Young-Beom;Kwon, Oh-Do;Shin, Dong-Young;Hyun, Kyu-Hwan;Lee, Do-Jin;Jung, Ha-Il;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.32 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • The objective of this research was to confirm the difference in physiological responses to environmental stresses such as chilling, high temperature, NaCl, and chemical stress (paraquat) in Protox inhibitor resistant-transgenic rice (MX, PX, and AP37) and its non-transgenic counterpart (WT). Transgenic and non-transgenic rice plants were exposed to a chilling temperature of $5^{\circ}C$ for 1 day or a high temperature of $45^{\circ}C$ for 4 days and allowed to recover at $25^{\circ}C$ for 6 days after the chilling treatment or 8 days after the high temperature treatment. Leaf injury, shoot fresh weight, porphyrin biosynthesis substances, and chlorophyll content were investigated in transgenic and non-transgenic rice at 6 days after 0.5% and 1% NaCl treatments or at 5 days after 0~300 ${\mu}M$ paraquat treatments. No significant difference in leaf injury and shoot fresh weight were observed between transgenic and non-transgenic rice during chilling and recovery. Plant height and shoot fresh weight were also similar between transgenic and non-transgenic rice during the high temperature and recovery period (0~5 days). However, plant height and shoot fresh weight in transgenic rice line MX and PX were lower than in non-transgenic rice at 6 days for recovery. Leaf injury, chlorophyll, and Mg-Proto IX ME contents had no significant difference between transgenic rice and non-transgenic rice after NaCl treatment, but Proto IX content for AP37 and shoot fresh weight for PX and AP37 in 0.5% NaCl treatment were significantly reduced compared with non-transgenic rice. There was no difference in leaf injury and shoot fresh weight when comparing transgenic rice and non-transgenic rice after paraquat treatment. Although transgenic rice and non-transgenic rice showed a little difference at a particular measurement period in certain environmental stresses, there was generally no difference in physiological responses between transgenic rice and non-transgenic rice.

Effects of Production Performance, Immunity and Egg Quality by Raising on Exercise Yard in Laying Hens (산란계 운동장 사육이 생산성, 면역성 및 계란의 품질에 미치는 영향)

  • Kim, Ki Soo;Lee, Suk Kyung;Choi, Young Sun;Ha, Chang Ho;Kim, Won Ho
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.97-103
    • /
    • 2013
  • The present study examined effects of production performance, immune activity and egg quality by raising on exercise yard in laying Hens, the results of which could be used as baseline data to enhance animal welfare and the safety of livestock products. A total of 90 Hy-line-Brown laying hens of 13 weeks old were used in the experiment for 38 weeks. The cage group (Cage group) was raised in a cage, where an area of $0.084m^2$ was assigned to two hens, while hens in the exercise yard $1.1m^2$ group ($1.1m^2$ group) was assigned to a combination of a chicken house ($0.11m^2$) and a exercise yard ($1.1m^2$) per a hen. Hens in the exercise yard $2.2m^2$ group ($2.2m^2$ group) was assigned to a combination of a chicken house ($0.11m^2$) and a exercise yard ($2.2m^2$) per a hen. Treatment was replicated 3 times with ten birds per replication. Ten birds were arranged according to randomized block design. While initial egg production rate was significantly higher in the Cage group, $1.1m^2$ group exhibited a slightly higher rate in the mid- and late-stage of the experiment, although the difference was not statistically significant. Exercise yard treatment groups exhibited a higher feed intake rate than the Cage group up until the hens were 39 weeks old (P<0.05), but the difference dissipated from that age on. The age at first egg in the exercise yard treatment groups was 16 days later than that for the Cage group (P<0.05), although differences in the quality of the eggs were not observed. The results of immune activity test showed that IgA in the exercise yard treatment groups was significantly higher than that in the Cage group (P<0.05). IgG, IgM, and corticosterone were also higher in the exercise yard treatment groups. The soil in exercise yard increased of organic matter and decreased of cation exchange capacity (CEC) in raised hens. In sum, raising hens in a exercise yard raise style decreased the rate of initial egg production, which was followed by a slight increase during the latter part of the experiment. The exercise yard raise hens' immune activity was heightened.

Effect of Night-break Period on Growth and Anthesis of Orostachys japonicus (암기중단 처리시간에 따른 바위솔의 생장과 개화)

  • 강진호;류영섭;조부근
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.236-242
    • /
    • 1996
  • Orostachys japonjcus, called Wasong in herb medicine, has been artificially cultivated as an anti-tumor medicinal. The experiment was done to examine the effect of night-break periods imposed immediately before its bolting time on its morphological, flowering-related characters and fraction dry weights. After a plant was grown in a 15cm plastic pot containing a 2:1 soil:Peat moss mixture for about 3 months, three different night-break periods (0.5, 1 and 2 hours) around midnight were treated from Aug. 24. to compare with the natural daylength. The plants were sampled 6 times by 2-week interval after the treatments. Plant height and inflorescence length of all the treatments inclined with time lapse after the treatment and were shorter in 2 hour night-break due to slow increment than in the other treatments, while stem diameter showed reverse result. All the treatments except 2 hour night -break were nearly same in fraction, shoot and total dry weights per plant; two hour night-break treatment had greater leaf and bract weight from 6 weeks, greater stem, shoot and total weights from 2 weeks and greater root weight from 4 weeks but did less floret weight after the treatment. Although florets on the inflorescence were formed in 2 hour night-break treatment, flowering florets and flowering plants never occurred. In the other treatments showed the similar response, however, more florets appeared from 2 weeks, flowering florets was sharply increased from 6 weeks and flowering plants were reached up to 100% from 6 to 8 weeks after the treatment. Inflorescence length or number of total florets per plant in 2 hour night-break was positive-correlated to all the fraction dry weights except that those of natural daylength was not done, meaning that its artificial cultivation should permit bolting to secure more shoot dry matter.

  • PDF

Effect of a Combined Treatment with Uniconazole, Silver Thiosulfate on Reduction of Ozone Injury in Tomato Plant (Uniconazole 과 Silver Thiosulfate 의 복합처리가 토마토의 오존피해경감에 미치는 효과)

  • Ku, Ja-Hyeong;Won, Dong-Chan;Kim, Tae-Il;Krizek, Donld T.;Mirecki, Roman M.
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 1992
  • Studies were conducted to determine the combined effect of uniconazole [(E) -1-(4-chlorophenyl)-4, 4-demethyl 2-(1,2,4 triazol-1-yl)-1-penten-3-ol] and silver thiosulfate $[Ag {(S_2O_3)}^3\;_2-]$ (STS) on reduction of ozone injury in tomato plants(Lycopersicon esculentum Mill. 'Pink Glory'). Plants were given a 50ml soil drench of uniconazole at concentrations of 0, 0.001, 0.01 and 0.1 mg/pot at the stage of emerging 4th leaf. Two days prior to ozone fumigation, STS solution contained 0.05% Tween-20 was also sprayed at concentrations of 0, 0.3 and 0.6 mM. Uniconazole at 0.01 mg/pot and STS at 0.6 mM were effective in providing protection against ozone exposure(20h at 0.2ppm) without severe retardation of plant height and chemical phytotoxicity, respectively. Combined treatment with uniconazole, STS significantly reduced ozone injury at the lower concentration than a single treatment with uniconazole or STS. Uniconazole treatment reduced plant height, stem elongation and transpiration rate on a whole plant level and increased chlorophyll concentration. STS did not give any effect on plant growth and chlorophyll content but increased transpiration rate in non-ozone-fumigated plants. Ethylene production in the leaves of ozone-fumigated plants was decreased by uniconazole and STS pretreatment, but there was no protective effect on epinasty of leaves in uniconazole-treated plants. STS increased ethylene production in non-ozone-fumigated plants, but it significantly reduced the degree of epinasty and defoliation of cotyledons when plants were exposed to ozone. Uniconazole slightly increased superoxide dismutase and peroxidase activities. But STS showed little or no effects on such free radical scavengers. Day of flowering after seeding was shortened and percentages of fruit set were increased by uniconazole treatment. STS was highly effective on protecting reduction of fruit set resulting from ozone fumigation. These results suggest that combined use of uniconazole and STS should provide miximum protection against ozone injury without growth retardation resulting in yield loss.

  • PDF

Bakanae Disease Reduction Effect by Use of Silicate Coated Seed in Wet Direct-Seeded Rice (규산코팅 벼 종자를 이용한 담수직파재배 시 벼 키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Kim, Yeon Ju;Jung, Ki-Hong;Choi, Ul-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • To investigate the effect of soluble silicate zeolite dressing of the rice against bakanae disease, field trial in reclaimed land and in vitro were carried out. The coated rice seeds (SCS) which were dressed with the mixture of 25% silicic acids (binder), and the zeolite (coating powder). In wet direct seeding, uniform scattering of rice seeds on the soil surface and the better seedling establishment were shown in SCS treatment plots. The incidence of bakanae disease began from the mid tillering stage toward the heading stage. Around heading stage, the ratio of infected tillers reached its highest point by 9.9% in non-SCS treatment plots. While, in SCS treatment plots, the ratio of infected tillers was no more than 0.01%. The vitality of the pathogenic fungi of bakanae disease in the SCS and non-SCS samples were assessed. Samples were incubated for one week keeping proper humidity at $30^{\circ}C$ after inoculated with panicles of infected rice plants from experimental field plots. In non-SCS treatment, pinkish colonies were formed on the grain surface of panicle of infected plants, and mycelium, macro-conidia and micro-conidia were developed actively inside part of infected grain inoculated. While in SCS treatment, micro-conidia and mycelium were not survived and the growth of macro-conidia, mycelia were greatly inhibited and withered. Based on the results, it is concluded that the environmental friendly control of bakanae disease by use of SCS is possible and soluble silicate can be applied as agents for replacement of seed disinfection.

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor) (과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과)

  • Shim, Doobo;Song, Ki Eun;Park, Chan Young;Jeon, Seung Ho;Hwang, Jung Gyu;Kang, Eun-ju;Kim, Jong Cheol;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.140-148
    • /
    • 2018
  • As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.