• Title/Summary/Keyword: soil treatment

Search Result 3,296, Processing Time 0.035 seconds

Effects of Copper (II) Treatment in Soil on Tetracycline Toxicity to Growth of Lettuce (Lactuca sativa L.) (토양에서 상추의 생장에 대한 Tetracycline의 독성에 미치는 구리 (II)의 효과)

  • Lee, Byeongjoo;Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • Tetracycline (TC) groups, widely used veterinary antibiotics, can enter into environment through animal manure application. TC forms a ligand complex with multivalent metal cations via chelation that can affect sorption and mobility of TC in soil. So far, however, it has been confirmed through the reaction of the soil outside in the aqueous solution and the evaluation of the performance in the soil cultivation process is insufficient. The purpose of this study was to examine effects of copper on TC toxicity to lettuce growth. In this research, $750mg\;kg^{-1}$ of TC and 2.5, 7.5, $17.5mg\;kg^{-1}$ of Cu are treated in soil and lettuce was cultivated in the treated soil. Growth difference of lettuce by treatment was observed. As a result, $750mg\;kg^{-1}$ of TC treated soil showed toxic effect to lettuce and the effect is alleviated by copper treatment.

Arbuscular Mycorrhizal Fungi Enhance Sea Buckthorn Growth in Coal Mining Subsidence Areas in Northwest China

  • Zhang, Yanxu;Bi, Yinli;Shen, Huihui;Zhang, Longjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.848-855
    • /
    • 2020
  • Land subsidence induced by underground coal mining leads to severe ecological and environmental problems. Arbuscular mycorrhizal fungi (AMF) have the potential to improve plant growth and soil properties. We aimed to assess the effects of AMF on the growth and soil properties of sea buckthorn under field conditions at different reclamation times. Inoculation with AMF significantly promoted the survival rate of sea buckthorn over a 50-month period, while also increasing plant height after 14, 26, and 50 months. Crown width after 14 months and ground diameter after 50 months of inoculation treatment were significantly higher than in the uninoculated treatment. AMF inoculation significantly improved plant mycorrhizal colonization rate and promoted an increase in mycelial density in the rhizosphere soil. The pH and electrical conductivity of rhizosphere soil also increased after inoculation. Moreover, after 26 and 50 months the soil organic matter in the inoculation treatment was significantly higher than in the control. The number of inoculated soil rhizosphere microorganisms, as well as acid phosphatase activity, also increased. AMF inoculation may play an active role in promoting plant growth and improving soil quality in the long term and is conducive to the rapid ecological restoration of damaged mining areas.

Making Techniques and Provenance Interpretation for Molding Clay of Four-Guardian Statues in Songgwangsa Temple, Suncheon, Korea (순천 송광사 사천왕상 소조토의 제작기법과 원산지 해석)

  • Jo, Young-Hoon;Jo, Seung-Nam;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.43-60
    • /
    • 2010
  • This study was investigated quantitative and objective making techniques for molding clay of Four-guardian statues in Songgwangsa temple. Also, basic data about the provenance of molding clay was acquired for the restoration using same materials when the conservation treatment is carried out. As a result, molding clay used the Four-guardian statues was identified the very similar soil regardless of layers and objects. But molding clay differed in particle sizes and contents of organic matters according to the first layer to finish layer in relatively thick parts. Also, it was used one kind of soil without the layer distinction in thin parts. The restoration soil was applied to genetically similar soil as molding clay of the Four-guardian statues, and showed a difference of careful selection degree according to the layers. As a result of the provenance interpretation, the soil distributing presumed provenance was confirmed the same origin as molding clay. Therefore, the soil is appropriate for the materials of conservation treatment. This result will contribute inorganic material research and conservation treatment for the clay molded Four-guardian statues in Korea.

Effects of Transplanting Time and Vinyl-film Mulching Treatment on the Biomass Production of Artemisia annua L. in the Saemangeum Reclaimed Tidal Lands in Korea

  • Song, Jae-Do;Sohn, Yong-Man;Lee, Myung-Hi;Jeon, Geon-Yeong;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.29-37
    • /
    • 2011
  • The experiment was carried out to find the effects of transplanting time and vinyl-film mulching treatment on the growth of artemisia by randomized block design with three replications. The experiment site ($100{\times}130$ m) was temporally established in the south-eastern part of Saemangeum reclaimed tidal land (near Gwanghwal myun, Gimjae-gun, Jellabukdo). Artemisia plants had been partly suffered from salt injury, because soil salinities in some area during growing period had been measured higher than 10 dS $m^{-1}$. Growth of plant height and survival ratio of transplanted plants had been significantly correlated with soil salinity and then the regression equations between plant height (y) and soil EC (x) and between survival ratio (y) and soil EC (x) were expressed as y=-16.59ln(x)+43.852 and $y=0.6453x^2-17.566x+103.99$, respectively. It was concluded that early transplanting and vinyl mulching was more beneficial for biomass production of artemisia, because biomass was 6.41 times more in the early transplanting than in the late transplanting, and 2.63 times more in the vinyl-film mulching than in the no mulching treatment.

Effects of Soil Moisture Stress at Different Growth Stage on Growth, Yield and Quality in Rice

  • Park, Hong-Kyu;Choi, Weon-Young;Kang, Si-Yong;Kim, Young-Doo;Choi, Won-Yul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.143-148
    • /
    • 1999
  • Soil moisture condition is an important limiting factor in growth and yield in rice culture. The purpose of this study was to compare the influence on the growth, yield and Quality of rice subjected to soil moisture stress (SMS) at different growth stages. Ajaponica rice cultivar, Dongjinbyeo, was cultured under flooded conditions in a plastic container filled with silty loam soil. The container was subjected to SMS until the initial wilting point (IWP) coincided with about 10% in soil moisture content and about-200 kPa in soil matric potential, and was then irrigated again, at 6 and 5 of main growth stage in 1996 and 1997, respectively. At maturity, the plant height, tiller number, leaf area and top dry weight were decreased more in SMS treatments at the early stage than the late stage. The averaged yield index of SMS to control in both years was lowest at meiosis (62.5%), which primarily resulted from lower percent ripened grain and 1,000 grain weight, and second' reduced the spikelet number per panicle and panicle number per hill, and followed at tillering stage (68.5%) which resulted from the lower production in tiller number and top dry matter during and after SMS treatment. The percent-age of read rice in SMS plants varied with the treatment stage as order of lower at meiosis (44.0%), heading (53.9%), panicle initiation (70.1%), tillering (72.1%), ripening (75.8%) and 5 days after transplanting (DAT) (79.0%). Protein content in brown rice was slightly larger in SMS at late growth stage than the control, while the contents of fat and ash differed very little between SMS and control. Contents of Mg and K and Mg/K in brown rice with SMS were lower at some treatment stages such as at ripening or panicle initiation.

  • PDF

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

An option to provide water and fertilization for rice production in alkaline soil: fertigation with slow release fertilizers (SRFs)

  • Young-Tae Shin;Kangho Jung;Chung-Keun Lee;Jwakyung Sung
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.871-879
    • /
    • 2022
  • An increasing global population requires a greater food supply, and accordingly there is demand for enhanced production of rice, as a major crop plant that covers half of the world's population. Rice production in arid area is extremely difficult due to poor soil fertility, salinity, deficit of irrigation water, and weather conditions. The aim of the present study was to determine whether various fertilization recipes could provide a countermeasure to allow rice production while also providing soil amendment such as soil pH adjustment. The study was conducted at an experimental field of the United Arab-Emirates (UAE) from January to April, 2022. Rice seedlings (cv. Asemi, alkaline-resistant) were transplanted in plastic containers, and different types of water and nutrient managements were employed as follows: water management (flooding and aerobic for NPKs treatment group) and nutrient management (NPKs, slow release fertilizers [SRFs] and SRFs + NPK-1 treatment groups with flooding). Water and nutrient management did not show any effect on soil pH adjustment. Rice growth was significantly enhanced in the flooding compared to the aerobic condition, whereas the effect of nutrient management clearly differed among the treatment groups, with SRFs + NPK-1 showing the best results followed by SRFs and NPKs. Most of the fertilization groups markedly accumulated soluble sugars in the shoots and grains of rice plants, but concomitantly a decrease in the roots. Overall, the level of starch showed a tendency of relatively slight perturbation by fertilization. Taken together, the results indicate that soil physical structure should be preferentially amended to find the key for suitable rice production.

The Influence of Soil Contaminant on the Solidification Treatment Effect of Cement (토질오염이 시멘트의 고결처리효과에 미치는 영향)

  • Chang, Pyoung-Wuck;Yu, Chan;Lee, Chang-No;Roh, Gwang-Ha
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.388-394
    • /
    • 1998
  • In this study, the influence of soil contaminant on the cement solidification treatment was considered. Unconfined compression strength(UCS) test was carried out for solidificated specimen, Setting time was measured for cement slurry that was mixed with leachate and wastewater. It was appeared that treatment effect were affected by the the kind of soil, organic content, component of pore water and its concentration. And UCS of samples which were cured in the leachate were decrease about l/5. Especially for the marine clay, UCS of samples which were cured in leachate during 180 days were smaller than 90 days cured samples in the case of cement mixing ratio 5%, 10%.

  • PDF

Soil Incorporated and Soil Surface Treatment of Herbicides before Transplanting of Paddy Rice (제초제의 수도 이앙전 토양혼화 및 토양표면 처리에 관한 연구)

  • Ryang Whan Seung
    • Korean journal of applied entomology
    • /
    • v.12 no.2
    • /
    • pp.63-70
    • /
    • 1973
  • Weed control tests with 6 herbicides which seem to have selectivity of absorption by roots of rice were carried out by the rate of application, the depth of incorporation and the time of application in comparison with the after transplanting treatment of MO in SiCL soil. Soil-incorporated treatment of Ronstar, Saturn, TOK and Saturn·5 were applied before transplanting and soil surface treatment of Machete, PCP and MON·0385 were applied. The results are summarized as follows: 1. Initial crop injury and growth Soil surface treatment before transplanting of PCP of 1,000g ai/10a caused heavy initial injury, which was recovered from by about 50 days after application. Saturn-S at 4kg prod.110a caused slight crop injury sectionally, which was soon recovered from. And little crop injury was caused by other treatments. 2. Effect in weed control Excellent weed control of 90 to 97.7 percent was obtained, when measured 27 days after transplanting, by all the treatments. More than 90 percent weed control was maintained for about 73 days after transplanting by all the treatments of Ronstar and Saturn-S of 3 to 4kg prod./10a. The treatments of MON-0385 of 175g ai/10a and TOK of 280g ai/10a showed somewhat poor weed control. 3. Yield No reduction of yield was observed at all the plots except the non·weeded plot at which 11.4 percent yield reduction was observed compared with the hand weeding plot. The yield was increased by the 1 DBT and 2 DBT treatments of Machete of 210g ai/10a, the treatments of Ronstar of 60g ai/10a, when incorporated to the depth of 2.5 and 12cm, the incorporation treatment of Saturn-S of 3kg prod./10a and 1 DBT treatment of MON-0385 of 175g ai/10a.

  • PDF

Effects of Deep Tillage before Planting on Physicochemical Properties of Soil, Growth and Fruit Characteristics in Cultivation of Watermelon under Plastic Film House (수박 시설 재배에서 정식 전 심경로타리 처리가 토양 이화학성, 생육 및 과실 특성에 미쳐는 영향)

  • Eun, Jong-Seon;Han, Suk-Kyo;Kang, Nam-Hee;Kim, Ho-Cheol;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.130-134
    • /
    • 2010
  • To investigate effects of deep tillage before planting on physicochemical properties of soil, growth and fruit characteristics in cultivation of watermelon (Citrullus vulgaris L. cv. 'Uriggul') under plastic film house, this study was conducted in cultivating field of Gochang Junbuk. pH in soil after harvest compared with soil before planting of watermelon had almost no change, but EC lowed greatly in the two treatments. Available phosphate concentration in the soil with the deep tillage treatment was lower, K concentration of exchangeable cation decreased greatly than these with conventional tillage treatment. In the growth at 27th day after planting plant, stem length to 10th node from the first node, leaf width with deep tillage treatment were longer, bearing node of the first and second flower and wilting degree were lower than these with conventional tillage treatment. In the growth of harvesting time, the stem length to 30th node from the first node with the deep tillage treatment were longer, leaf discoloration degree was lower than these with conventional tillage treatment. Also, the harvested fruits length, diameter, peel hardness, and weight were significantly better than these with conventional tillage treatment.