• Title/Summary/Keyword: soil thickness

Search Result 576, Processing Time 0.024 seconds

Evaluation of artificial ground freezing behavior considering the effect of pore water salinity

  • Gyu-Hyun Go;Dinh-Viet Le;Jangguen Lee
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.73-85
    • /
    • 2024
  • There is growing interest in introducing artificial ground freezing (AGF) as a method to temporarily secure unstable ground during tunnel construction. In order to efficiently operate an artificial ground freezing system, basic modeling research is needed on the changes in freezing behavior according to various soil environmental conditions as well as design conditions. In this study, a thermal-hydraulic coupled analysis was performed to simulate the artificial ground freezing process of ground containing salt water. The effect of major variables, including pore water salinity, on artificial ground freezing test performance was investigated. Additionally, an artificial neural network-based prediction model was proposed to estimate the time required to achieve the desired arch thickness. The artificial neural network model demonstrated reliable accuracy (R2 = 0.9942) in predicting the time it would take to reach the desired arch thickness. Among the major input variables considered, pore water salinity appeared to be the most influential input variable, and initial soil temperature showed the least importance.

Finite Element Analysis of Reinforced Earth Wall Behavior (보강토 옹벽의 거동에 관한 유한요소 해석)

  • 최인석;장연수;조광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

Behaviour of interfacial layer along granular soil-structure interfaces

  • Huang, Wenxiong;Bauer, Erich;Sloan, Scott W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.

Finite element analysis of a piled footing under horizontal loading

  • Amar Bouzid, Dj.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2011
  • In this paper a semi-analytical approach is proposed to study the lateral behavior of a piled footing under horizontal loading. As accurate computation of stresses is usually needed at the interface separating the footing (pile) and the soil, this important location should be appropriately modeled as zero-thickness joint element. The piled footing is embedded in elastic soil with either homogeneous modulus or modulus proportional to depth (Gibson's soil). As the pile is the principal element in the piled footing system, a limited parametric study is carried out in order to investigate the influence of footing dimensions and the interface conditions on the lateral behavior of the pile. Hence, the pile behavior is examined through its main governing parameters, namely, the lateral displacement profiles, the bending moments, the shear forces and the soil reactions. The numerical results are presented for Poisson's ratio of 0.2 to represent a large variety of sands and Poisson's ratio of 0.5 to represent undrained clays.

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method. (부분구조법에 의한 지반-구조물 상호작용 시스템의 지진응답 매재변수 해석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.117-125
    • /
    • 1997
  • ABSTRACT This paper presents results of parametric studies of the seismic responses of a reactor containment structure on layered base soil. Among the numerous parameters, this study concentrates on the effects of embedment of structure to the base soil, thickness of the soil layers, stiffness of the base soil, and the definition point of the input motion. For the analysis, a substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of the SSI system computed from the ratio of dissipated energy to the strain energy for each mode. From the study results, the sensitives of each parameter on the earthquake responses have been suggested for the practical application of the substructure method of SSI analysis.

  • PDF

The behavior of high-speed rail roadbed reinforced by geogrid under cyclic loading (지오그리드로 보강한 고속철도 노반의 동적 거동)

  • 신은철;김두환;김종인
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.415-422
    • /
    • 1999
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. Five series of test were conducted with varying the soil profile conditions including the ground level, type of soil, and the thickness of each soil layer. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to know the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Construction of Environmental-friendly Infrastructure in Saemangeum Reclaimed Land (새만금 간척지 토양특성과 친환경 활용 방안)

  • Seo, Dong-Uk;Jeon, Geon-Yeong;Kim, Hyun-Tae;Song, Jae-Do
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.40-48
    • /
    • 2010
  • Saemangeum reclaimed area is needed to construct much green zone to make high-quality multi-functional land such as tide embankment, lake dike, industrial complex, environmental spaces, etc. However, growth of plants is somewhat difficult because a salinity of Saemangeum soil is very high and a soil fertility, water content of soil are low. Therefore, it is essential to initial desalination of soil and continuous management for planting base. It is recommended that a group of grassland to raise the efficiency of covering should be made in the first stage and a forest by improvement of vegetation should be made in the mid and long term stage. It is recommended that the construction of vegetation base should be made with a regular thickness of soil of good quality in multi-functional area such as a shrub and wood. In case of construction of a windbreak forest, it is necessary to make a wood base of suitable depth using soil brought from another place or filling of soil. Also, it is necessary to keep a maintenance of woods in early stage. Saemangeum reclaimed land will be brand-named worldwide tourist attractions due to construction of much green zone having high quality multi-functional facilities.

  • PDF

A Study on Applicability of Soil Strength for Surface Treatment (표층처리를 위한 현장의 강도적용에 관한 연구)

  • Yang, Tae-Seon;Kim, Byeong-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.45-52
    • /
    • 2005
  • Most marine structures are constructed on very soft soil, soil improvements are needed for the area of road, buildings. In this paper, some considerations of several case studies on soil placement method after geotextile placement, known as surface treatment, are done. Considerations of strength applicability on the advanced construction method of sand and soil placement are proposed in this paper. Typical tensile strength of geotextile used in the surface soil stabilization method is 15t/m, and thickness of sand and soil placement between 1.6m and 3.1m. Undrained shear strength of soft clay layer ranges $0.2{\sim}1.2t/m^2$. In order to minimize the difficulties which include soil disturbance, soft soil gush and overturn of vertical drain installation rig more studies are needed.

  • PDF

Analysis on the Rainfall Triggered Slope Failure with a Variation of Soil Layer Thickness: Flume Tests (강우로 인한 조립토 사면에서의 토층 두께 변화에 따른 사면의 활동 분석: 실내 모형실험)

  • SaGong, Myung;Yoo, Jea-Ho;Lee, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.91-103
    • /
    • 2009
  • Slope failure depends upon the climatic features related to related rainfall, structural geology and geomorphological features as well as the variation of the mechanical behaviors of soil constituting a slope. In this paper, among many variables, effects of soil layer thickness on the slope failure process, and variations of matric suction and volumetric water content were observed. When the soil layer is relatively thick, the descending wetting front decreases matric suction and the observed matric suction reaches to "0" value. When the wetting front reaches to the impermeable boundary, the bottom surface of steel soil box, ascending wetting front was observed. This observation can be postulated to be the effects of various sizes of pores. When macro size pores exist, the capillary effects can be reduced and infilling of pore will be limited. The partially filled pores would be filled with water during the ascending of the wetting front, which bounces from the impermeable boundary. This assumption has been assured from the observation of variation of the volumetric water contents at different depth. When the soil layer is thick (thickness = 20 cm), for granular material, erosion is a cause triggering the slope failure. It has been found that the initiation of erosion occurs when the top soil is fully saturated. Meanwhile, when the soil layer is shallow (thickness = 10 cm), slope slides as en mass. The slope failure for this condition occurs when the wetting front reaches to the interface between the soil layer and steel soil box. As the wetting front approaches to the bottom of soil layer, reduction of shear resistance along the boundary and increase of the unit weight due to the infiltration occur and these produce complex effects on the slope failure processes.

A Field Study to Evaluate Greenroof Runoff Reduction and Delay (옥상녹화의 우수유출량 저감효과에 관한 연구 -토심 및 식생유무를 중심으로-)

  • Lee, Dong-Kun;Oh, Seung-Hwan;Yoon, So-Won;Jang, Seong-Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.117-122
    • /
    • 2006
  • The objective of this study is to analyze the greenroof runoff quantity and delay. The experimental districts, have different soil thickness and vegetation, had installed. A measurement was conducted in Seoul University to investigate the runoff quantity and delay of the greenroof. The measurement point of runoff quality data were 8, located next to each experimental district. Also, the precipitation was measured by rain gauges(# RG2). The experimental investigation lasted from 21th July to 4th December, a total of 137 days. The results showed that the greenroof can contribute runoff retention and delay by soil, but the intensity of actual rain event affected the runoff reduction and delay. Overall, when was the rainy season, percent rainfall retention ranged 17.5% and runoff flow was delayed for 1-3 hours. But on the other hand, when was the typical rain event, percent rainfall retention ranged over 90% and runoff flow was delayed for 1-11 hours. In the result, the greenroof had the greatest runoff retention and delay, while for the typical rain event.