A dynamical seasonal prediction system for boreal winter utilizing cryospheric information was developed. Using the Community Atmospheric Model, version3, (CAM3) as a modeling system, newly developed snow depth initialization method and sea ice concentration treatment were implemented to the seasonal prediction system. Daily snow depth analysis field was scaled in order to prevent climate drift problem before initializing model's snow fields and distributed to the model snow-depth layers. To maximize predictability gain from land surface, we applied one-month-long training procedure to the prediction system, which adjusts soil moisture and soil temperature to the imposed snow depth. The sea ice concentration over the Arctic region for prediction period was prescribed with an anomaly-persistent method that considers seasonality of sea ice. Ensemble hindcast experiments starting at 1st of November for the period 1999~2000 were performed and the predictability gain from the imposed cryospheric informations were tested. Large potential predictability gain from the snow information was obtained over large part of high-latitude and of mid-latitude land as a result of strengthened land-atmosphere interaction in the modeling system. Large-scale atmospheric circulation responses associated with the sea ice concentration anomalies were main contributor to the predictability gain.
It is important to estimate the possibility of recovery in physiologically damaged woody plant. It is suggested that C.E.R(cambial electrical resistance) might be a useful method to predict the permanent wilting point. D/A and A/D converter can be used to measure the C.E.R and it took only 10-20 msec for a measurement and the values were stable during this study. A computer could be used for the continual measurement of C.E.R. There were very big daily changes of C.E.R. was changed according to the changes of indoor temperature, but the phase was slightly different. It is reasoned that daily changes in C.E.R. is induced by the changes of water potential and cambial thickness. It was difficult to detect the changes of C.E.R. caused by changes in soil moisture under high soil water potential. Under low soil water potential, the changes in soil moisture under high soil water potential. Under low soil water potential, the changes of C.E.R. can be detected. After wilting, C.E.R. is increased very rapidly. When C.E.R. is not decreased by watering, it will be permanent wilting point. But it takes several days to confirm the permanent wilting point. To predict the possibility of recovery from wilting, the values of C.E.R. have no meaning. But the changes of C.E.R. are significant. Therefore we can predict the permant wilting point in woody plant by monitoring the change of C.E.R. by the computer.
본 연구에서는 지표면과 대기사이의 열-에너지 균형원리를 이용한 노면온도예측모형을 개발하였다. 본 연구에서 개발된 노면온도예측모형은 두 가지 모듈로 구성되는데 Canopy 1은 지표면과 대기 간의 열 교환을 묘사하기 위한 것이고, Canopy 2는 열에너지 교환 과정에서 포장체 특성을 반영하기 위한 것이다. 모형 수행에 필요한 다양한 입력변수는 기상청으로부터 수집하였다. 개발된 모형의 성능을 평가하기 위해 청원-상주 간 고속도로 상 문의교 지점에 설치된 접촉식 노면온도측정센서로부터 수집한 노면온도자료와 모형 수행을 통해 나온 결과 값을 비교 하였다. 이러한 비교는 동절기(12월)와 동절기 외 기간(10월)에 걸쳐 수행되었다. 비교 결과, 두 온도의 평균오차 값이 ${\pm}2^{\circ}C$ 범위 내에 있어, 모형의 성능이 매우 우수한 것으로 판단된다. 이러한 연구는 동절기 도로관리에 다양하게 사용될 것으로 사료되고, 특히 도로 기상정보체계 운영에 핵심이 되는 노면온도 예측 알고리즘으로 사용될 수 있는 기초 연구가 될 것이다.
Horizontal geothermal heat exchanger is affected by various factors such as pipe length, soil temperature, and outdoor environment. Simulation program is convenient for responding to various factors. The objective of this study was to determine the feasibility of using EnergyPlus to predict exit air temperature through horizontal geothermal heat exchanger in domestic. The correlation coefficient between EnergyPlus results and experimental results was 0.825. The correlation coefficient between EnergyPlus results and mathematical results was 0.722, indicating "The two values can based on Lousi on values can be Our results indicate that it is possible to use EnergyPlus to predict exit air temperature through horizontal geothermal heat exchanger.
기온상승 조건을 부여하기 위해 재식시기를 달리하여 재식 한 올방개의 출아와 초기생장을 평가하고 이들과 유효적산온도간의 관계를 수학적 모델로 해석하기 위한 포트 및 포장평가를 수행하였다. Gompertz 모델을 이용하여 이들의 관계를 비선형회귀로 분석한 결과, 파종일자 및 재식 토양심도에 상관없이 유효적산 온도로 누적출아율 및 초기생장을 양호하게 설명하였다. 올방개의 최대 출아율의 50% 도달에 필요한 유효적산온도는 올방개 괴경 재식심도 1, 3 및 5 cm에서 54.5, 84.0 및 $118.0^{\circ}C$이었으며 5엽기에 이르는데 필요한 유효적산온도는 각각 155.3, 188.5 및 $215.5^{\circ}C$이었다. 본 연구에서 개발된 모델식을 이용하여 계산한 결과 평균기온이 $2^{\circ}C$ 상승한 조건에서 올방개의 50 % 출아는 심도에 따라 약 1 - 2일 빨라지고, 5엽기에 도달하는 날짜도 약 2 - 3일 빨라질 것으로 예측되었다. 따라서 $2^{\circ}C$ 기온상승 조건에서 올방개를 효과적으로 방제하기 위해서는 현재의 제초제 처리시기보다 약 2 - 3일 빨라져야 할 것으로 판단된다.
본 연구에서는 전지구수치예보모델의 예측성능에 주요한 영향을 주는 요소 중 하나인 토양수분 초기장을 적절히 생산하기 위해, 오프라인 Noah 지면모델을 구축하여 스핀업실험을 수행하고 그 변동특성을 살펴보았다. 스핀업실험은 지면기후장 생성과 목표연도에 대한 현실화의 2단계로 구성되었다. 첫 번째 단계의 지면기후장 생성은 2008~2017년 기간에 대해 평균한 대기강제력으로 10년 동안 지면모델을 반복적으로 수행하는 방식으로 이루어졌으며, 토양수분 모의가 평형상태에 도달하는데 소요되는 시간은 토양깊이와 코펜 정의에 기반한 기후구 특성에 따라 차이가 컸다. 토양 첫 번째 층은 극지역에서 가장 길었고, 두 번째 층 부터 네 번째 층까지는 건조지역에서 평형상태에 도달하는 시간이 가장 늦어 최대 7년 내외의 시간이 소요되었다. 결과적으로 10년의 spin-up을 거치면 지면모델이 평형상태에 도달함을 알 수 있다. 이 소요시간은 지상기온과 강수량과 음의 상관관계를 보였다. 두 번째 단계에서는 2018년을 목표연도로 설정하고 지면기후장을 이용하여 추가 적분을 수행하고, 그 결과 6개월 이내에 지면모델에서 모의된 토양수분, 지표기온, 증발산량은 2018년 지면상태에 도달하는 것을 확인하였다. 이에 구축된 오프라인 Noah 지면모델 스핀업 시스템은 안정적으로 전구수치예보모델의 토양수분 초기장을 생산함으로써 전지구수치모델에 결합된 지면모델의 물리과정과 기초자료가 변하더라도 유연하게 대응할 수 있는 가능성을 확인하였다.
International Journal of Computer Science & Network Security
/
제23권7호
/
pp.155-164
/
2023
Machine learning with its high precision algorithms, Precision agriculture (PA) is a new emerging concept nowadays. Many researchers have worked on the quality and quantity of PA by using sensors, networking, machine learning (ML) techniques, and big data. However, there has been no attempt to work on trends of artificial intelligence (AI) techniques, dataset and crop type on precision agriculture using internet of things (IoT). This research aims to systematically analyze the domains of AI techniques and datasets that have been used in IoT based prediction in the area of PA. A systematic literature review is performed on AI based techniques and datasets for crop management, weather, irrigation, plant, soil and pest prediction. We took the papers on precision agriculture published in the last six years (2013-2019). We considered 42 primary studies related to the research objectives. After critical analysis of the studies, we found that crop management; soil and temperature areas of PA have been commonly used with the help of IoT devices and AI techniques. Moreover, different artificial intelligence techniques like ANN, CNN, SVM, Decision Tree, RF, etc. have been utilized in different fields of Precision agriculture. Image processing with supervised and unsupervised learning practice for prediction and monitoring the PA are also used. In addition, most of the studies are forfaiting sensory dataset to measure different properties of soil, weather, irrigation and crop. To this end, at the end, we provide future directions for researchers and guidelines for practitioners based on the findings of this review.
International journal of advanced smart convergence
/
제9권1호
/
pp.132-140
/
2020
It is very important to use appropriate nutrition water for crop growth in hydroponic farming facilities. However, in many cases, the supply of nutrition water is not designed with a precise plan, but is performed in a conventional manner. We proposes a forecasting technique for nutrition water requirements based on a data analysis for optimal strawberry production. To do this, the proposed forecasting technique uses linear regression for correlating strawberry production, soil condition, and environmental parameters with nutrition water demand for the actual two-stage strawberry production soil. Also, it includes predicting the optimal amount of nutrition water requires according to the heterogeneous cultivation environment and variety by comparing the amount of nutrition water needed for the growth and production of different kinds of strawberries. We suggested study uses two types of section beds that are compared to find out the best section bed production of strawberry growth. The dataset includes 233 samples collected from a real strawberry greenhouse, and the four predicted variables consist of the total amounts of nutrition water, average temperature, humidity, and CO2 in the greenhouse.
Babar, Zaheer Ud Din;UlAmin, Riaz;Sarwar, Muhammad Nabeel;Jabeen, Sidra;Abdullah, Muhammad
International Journal of Computer Science & Network Security
/
제22권5호
/
pp.330-334
/
2022
In light of the decreasing crop production and shortage of food across the world, one of the crucial criteria of agriculture nowadays is selecting the right crop for the right piece of land at the right time. First problem is that How Farmers can predict the right crop for cultivation because famers have no knowledge about prediction of crop. Second problem is that which algorithm is best that provide the maximum accuracy for crop prediction. Therefore, in this research Author proposed a method that would help to select the most suitable crop(s) for a specific land based on the analysis of the affecting parameters (Temperature, Humidity, Soil Moisture) using machine learning. In this work, the author implemented Random Forest Classifier, Support Vector Machine, k-Nearest Neighbor, and Decision Tree for crop selection. The author trained these algorithms with the training dataset and later these algorithms were tested with the test dataset. The author compared the performances of all the tested methods to arrive at the best outcome. In this way best algorithm from the mention above is selected for crop prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.