• Title/Summary/Keyword: soil temperature and moisture

Search Result 519, Processing Time 0.029 seconds

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT (SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가)

  • Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.337-346
    • /
    • 2010
  • Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.

Prediction of SWAT Stream Flow Using Only Future Precipitation Data (미래 강수량 자료만을 이용한 SWAT모형의 유출 예측)

  • Lee, Ji Min;Kum, Donghyuk;Kim, Young Sug;Kim, Yun Jung;Kang, Hyunwoo;Jang, Chun Hwa;Lee, Gwan Jae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.88-96
    • /
    • 2013
  • Much attention has been needed in water resource management at the watershed due to drought and flooding issues caused by climate change in recent years. Increase in air temperature and changes in precipitation patterns due to climate change are affecting hydrologic cycles, such as evaporation and soil moisture. Thus, these phenomena result in increased runoff at the watershed. The Soil and Water Assessment Tool (SWAT) model has been used to evaluate rainfall-runoff at the watershed reflecting effects on hydrology of various weather data such as rainfall, temperature, humidity, solar radiation, wind speed. For bias-correction of RCP data, at least 30 year data are needed. However, for most gaging stations, only precipitation data have been recorded and very little stations have recorded other weather data. In addition, the RCP scenario does not provide all weather data for the SWAT model. In this study, two scenarios were made to evaluate whether it would be possible to estimate streamflow using measured precipitation and long-term average values of other weather data required for running the SWAT. With measured long-term weather data (scenario 1) and with long-term average values of weather data except precipitation (scenario 2), the estimate streamflow values were almost the same with NSE value of 0.99. Increase/decrease by ${\pm}2%$, ${\pm}4%$ in temperature and humidity data did not affect streamflow. Thus, the RCP precipitation data for Hongcheon watershed were bias-corrected with measured long-term precipitation data to evaluate effects of climate change on streamflow. The results revealed that estimated streamflow for 2055s was the greatest among data for 2025s, 2055s, and 2085s. However, estimated streamflow for 2085s decreased by 9%. In addition, streamflow for Spring would be expected to increase compared with current data and streamflow for Summer will be decreased with RCP data. The results obtained in this study indicate that the streamflow could be estimated with long-term precipitation data only and effects of climate change could be evaluated using precipitation data as shown in this study.

Studies on the Developments of the Overwintering Peach Fruit Moth, Carposina niponensis Walsingham (복숭아심식나방 월동유충의 발육에 관한 연구)

  • Lee S.W.;Hyun J.S.;Park J.S.
    • Korean journal of applied entomology
    • /
    • v.23 no.1 s.58
    • /
    • pp.42-48
    • /
    • 1984
  • The developments of overwintering larvae of the peach fruit moth, Carposina niponensis Walsingham, were studied in Suweon. Among fully grown larvae leaving from apple fruit, the earliest diapause larva was observed late July, about $50\%-diapause$ in middle August and $100\%-diapause$ in early September. Induction of the diapause seemed to have relationships with the time of oviposition: the incidents of the diapause started with the larvae grown from the eggs which had been laid in late June or late July depending on the prevailing weather condition. The termination of the diapause seemed to be in early December, and almost all of the larvae incubated after January were pupated. For the breakage of the diapause, it required chilling period more than one month, and the most effective temperature seemed to be $5\~10^{\circ}C$, while the temperature lower than $0^{\circ}C$ seemed to be inhibitory, if not at all. The overwintered larvae started to pupate in middle May, and the developments of the over-wintered larvae were affected by the temperature as well as the moisture contents of soil in the spring. The dry condition of soil increased the mortality of the developing larvae.

  • PDF

Study on The Water Requirements of Chinese Cabbage. (배추 용수량에 관한 연구)

  • 김현철;정두호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3430-3437
    • /
    • 1974
  • .It is very importaut to know the water consumption of crops in planning irrigation works and practicing suitable soil moisture management. For the purpose of making it clear that how much water be consumed to cultivate the Chinese cabbage, Chamber method has been applied. Main equipments in the transpiration chamber are flowers, manometer and electric thermograph. The chamber made of vynyl plate has a small entrance at the base and an exit at the top, and the ventilation in the chamber was carried out by a flower through the entrance and exit. Air-flow adjusted by an orifice manometer enters the chamber from the outside over the crop canopy through the pipe like a chimney and finally goes out to the outside. Two sets which consist of a pair of dry and wet bulb made by thermistor are installed in the entrance and exit tube, and record air temperature automatically. Evapotranspiration amount is computed from the air-flow quantity and difference in absolute humidity between at the entrance and exit of the chamber by the following equation: ET=(X2-X1)${\times}$Q where ET=evapotranspiration amount X1=absolute humidity at the entrance(g/㎥) X2=absolute humidity at the exit(g/㎥) Q=air-flow quantity(㎥) This study was carried out at the upland farm of the Institute of Agriculture Engimeering and Utilization, Suwon, Korea. from 1971 to 1973. The results obtained in this experiment are as follows: 1. The total amount of evapotranspiration of Chinese Cabbage that is cultivated in autumn is 408.1mm during growth period. 2. Chinese cabbage rapidly grows up in the second ten days of September, 40th to 50th days after seeding. At the same time, the maximum amount of evaportranspiration of Chinese cabbage is 61.6mm/10 days 3. The correlation between Pan-evaporation and evapotranspiration is high, coefficient of correlation r=0.88**, and can be shown as The following regression equation: ET=0.913E+20.273 4. Evapotranspiration is closely related with meteorological factors: r=0.85**, for insolation, r=0.76** for air temperature, respectively. 5. The percentage of evapotranspiration amount, at the beginning of growth stage, gradually increases in proportion as the Chinese Cabbage grows but is largely affected by meteorological factors after the green cover formation. 6. By Blaney and Griddle formula, evaportranspiration coefficient "K" are within from 0,85 to 1.27.

  • PDF

Effect of Ureaform, SCU and Melamine on Barley Growth and their Nitrogen Supplying Ability (Ureaform, SCU, Melamine의 질소공급력(窒素供給力)과 보리 생육(生育)에 대(對)한 효과(效果))

  • Lim, Sun-Uk;Oh, Nam-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.265-273
    • /
    • 1984
  • To investigate nitrogen supplying effect of some slowrelease N-fertilizers on barley in upland soil sulfurcoated urea(SCU), ureaform and melamine (1,3,5-Triazine-2,4,6-triamine) were treated and compared to urea. In addition, thiourea as a nitrification inhibitor was also tested. Effects of variable soil condition such as moisture content, pH and temperature on nitrogen supplying ability of the fertilizers and on growth of barley were studied through incubation test and pot culture and the obtained results were summarized as follows: The releasing rate of ammonia from urea, SCU, ureaform and melamine were resulted as 27-59%, 25-39%, 9-34% and 0.7-4.3% at maximum conversion rate, respectively. Nitrification rate of the tested fertilizers was higher at pH 6.54 markedly than at pH 4.73. Addition of thourea depressed the formation of $NO_3$ during four weeks of incubation period. Mixed application of ureaform with small amount of urea contributed to nitrogen supply till latter growth stage of barely Basal application of melamine showed lowest nitrogen supplying ability and injurious response on barley growth.

  • PDF

Development of Korean SPAR(Soil-Plant-Atmosphere-Research) System for Impact Assessment of Climate Changes and Environmental Stress (기후변화 및 환경스트레스 영향평가를 위한 한국형 SPAR(Soil-Plant-Atmosphere-Research) 시스템의 개발)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.187-195
    • /
    • 2019
  • The needs for precise diagnostics and farm management-decision aids have increased to reduce the risk of climate change and environmental stress. Crop simulation models have been widely used to search optimal solutions for effective cultural practices. However, limited knowledge on physiological responses to environmental variation would make it challenging to apply crop simulation models to a wide range of studies. Advanced research facilities would help investigation of plant response to the environment. In the present study, the sunlit controlled environment chambers, known as Korean SPAR (Soil-Plant-Atmosphere-Research) system, was developed by renovating existing SPAR system. The Korean SPAR system controls and monitors major environmental variables including atmospheric carbon dioxide concentration, temperature and soil moisture. Furthermore, plants are allowed to grow under natural sunlight. Key physiological and physical data such as canopy photosynthesis and respiration, canopy water and nutrient use over the whole growth period are also collected automatically. As a case study, it was shown that the Korean SPAR system would be useful for collection of data needed for understanding the growth and developmental processes of a crop, e.g., soybean. In addition, we have demonstrated that the canopy photosynthetic data of the Korean SPAR indicate the precise representation of physiological responses to environment variation. As a result, physical and physiological data obtained from the Korean SPAR are expected to be useful for development of an advanced crop simulation model minimizing errors and confounding factors that usually occur in field experiments.

Characteristics of Bottom Ash Generated from Coal Fired Power Plants' Bottom Ash as an Eco-friendly Bio-composite Material - Focusing on Far Infrared Ray, Antibacteria, Antifungus, Deodorization, Aridity and Humidity - (친환경 바이오 혼합소재로서 화력발전소 유연탄 Bottom ash의 특성 연구 - 원적외선, 항균, 항곰팡이, 탈취, 조습 등을 중심으로 -)

  • Lee, Jong Gyu;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.51-60
    • /
    • 2017
  • Bottom ash(BA) from coal-fired power plants is burnt and remaining ash at high temperature. Since the BA is baked at high temperature, it is considered to be the same function as the elvan. Nowadays, the demand for mortar with far infrared rays, antibacteria, antifungus, deodorization, aridity and humidity function is increasing as the materials such as Hwangtoh(yellow soil) and elvan rather than general mortar. As a result of comparing the functionality of eco-friendly bio BA mortar with that of general mortar, the far infrared ray emissivity is about $0.02{\times}10^2W/m^2$ more and the deodorization function is about 26% or more. Even in the case of humidity control, BA motors showed about 1.8 times higher than general mortar, and more than 10% higher than the "good" standards of moisture absorption and damp proofing construction materials established by the Ministry of Land, Transport and Maritime Affairs.

Effects of high temperature on the flowering & pod setting and rain in the seed elongation stage on the soybean growth

  • Han, Won Young;Park, Hyeon Jin;Jeon, Weon Tai;Ryu, Jong Soo;Bae, Jin Woo;Park, Jin Ki;Kwak, Kang Su;Baek, In Youl;Kang, Hang Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.326-326
    • /
    • 2017
  • Climate warming is the issue on the global scale. Soybean can be seriously damaged when high temperature occurs during a reproductive stage such as the flowering and pod-setting period according to the Representative Concentration Pathway (RCP) (2021~2100) 8.5 scenarios. The weather in 2016 was very different from other years (average for 30 years from 1980 to 2010) ; the highest temperature was $33.7^{\circ}C$ which was higher $3.29^{\circ}C$ than average temperature from last 30 years and average rainfall was 26.5 mm, lower 140.9 mm than average rainfalls from other years. Especially, the highest temperature during soybean flow-ering and pod setting stage was $26.8^{\circ}C$ which was higher $0.1^{\circ}C$ and rainfall was 172.2 mm, higher 47.8 mm than other years from the first to the 20th in the October at soybean seed elongation stage. Soybean leaves were turned upside down by the drought stress during the flowering and pod-setting stage. The numbe-r of pods and seeds per unit area decreased 11.0% and 30.3% compared with the previous year, respectively. The ripening period was prolonged by 21 days because of high temperature and soil moisture contents due to the continual rainmade increase of the seed weight up to 15.6% and the yield decreased 7.1% compared to the previous year.

  • PDF

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF

An Analysis of Hydrologic Changes in Daechung Dam Basin using GCM Simulation Results due to Global Warming (GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 분석)

  • An, Jae-Hyeon;Yu, Cheol-Sang;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.335-345
    • /
    • 2001
  • The objective of this research is to analyze the hydrological environment changes in Daechung Dam Basin due to the global warming. GCM simulation results are used to predict the possible changes in precipitation and temperature. The changes of potential evapotranspiration, soil moisture and runoff due to the changes of precipitation and temperature are analyzed using a conceptual water balance model. From the simulation results using the water balance model for lx$CO_2$ and 2x$CO_2$ situations, it has been found that the runoff would decrease in Winter, but increase in Summer and Fall due to the global warming. Therefore, it is predicted that the frequency of drought and flood occurrences in Daechung Dam Basin would be increased in 2x$CO_2$ condition.

  • PDF