• Title/Summary/Keyword: soil strain

Search Result 1,969, Processing Time 0.032 seconds

The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant against Pathogen Infection and High Salinity Stress

  • Usmonov, Alisher;Yoo, Sung-Je;Kim, Sang Tae;Yang, Ji Sun;Sang, Mee Kyung;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.72-78
    • /
    • 2021
  • Various management systems are being broadly employed to minimize crop yield loss resulting from abiotic and biotic stresses. Here we introduce a Bacillus zanthoxyli HS1 strain as a potent candidate for managing manifold stresses on vegetable plants. Considering 16S rDNA sequence and biochemical characteristics, the strain is closely related to B. zanthoxyli. The B. zanthoxyli HS1's soil-drench confers disease resistance on tomato and paprika plants against infection with Ralstonia solanacearum and Phytophthora capsici, respectively. Root and shoot growths are also increased in B. zanthoxyli HS1-treated cabbage, cucumber, and tomato plants, compared with those in mock-treated plants, after application of high salinity solution. Moreover, the pretreatment of B. zanthoxyli HS1 on cabbage plants inhibits the degradation of chloroplast pigments caused by high salinity stresses, whereas the inhibitory effect is not observed in cucumber plants. These findings suggest that B. zanthoxyli HS1 stain inhibits disease development and confers tolerance to salinity stress on vegetable plants.

Promotion of Tricholoma matsutake mycelium growth by Penicillium citreonigrum

  • Doo-Ho Choi;Jae-Gu Han;Kang-Hyo Lee;An Gi-Hong
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.354-359
    • /
    • 2023
  • Tricholoma matsutake has been the most valuable ectomycorrhizal fungi in Asia because of its unique flavor and taste. However, due to the difficulty of artificial cultivation, the cultivation of T. matsutake has relied on natural growth in forests. To cultivate the T. matsutake artificially, microorganisms in fairy rings were introduced. In this study, we isolated 30 fungal species of microfungi from the soil of fairy rings. Among them, one single fungal strain showed a promoting effect on the growth of T. matsutake. The growth effect was confirmed by measuring the growth area of T. matsutake and enzyme activities including a-amylase, cellulase, and b-glucosidase. In comparison with control, microfungal metabolite increased the growth area of T. matsutake by 213% and the enzyme activity of T. matsutake by 110-200%. The isolated fungal strain was identified as Penicillium citreonigrum by BLAST on the NCBI database. The Discovery of this microfungal strain is expected to contribute to artificial cultivation of T. matsutake.

First Report of Soft Rot Induced by Dickeya dadantii on Euphorbia hypogaea in Korea

  • Ismaila Yakubu;Ji Ho Song;Yun Ju Lee;Min A Son;Su Hyeon Han;Hyun Gi Kong
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.95-98
    • /
    • 2024
  • In a survey conducted in March 2023, Euphorbia hypogaea plants cultivated within greenhouses in Yongin, Korea exhibited water-soaked areas near the stem base, close to the soil. Subsequent isolation from diseased E. hypogaea led to the identification of a bacterial strain, designated as CBNUMPBL-103. The isolate was identified as Dickeya dadantii through sequencing of the 16s rRNA and phylogenetic analysis. The pathogenicity of the isolate was confirmed by inoculating it into healthy E. hypogaea, resulting in the manifestation of similar symptoms observed during the survey. The re-isolated strain recovered from inoculated plants showed a similar morphology with the inoculated strain. This is the first documentation of D. dadantii causing soft rot of E. hypogaea in Korea.

Halobacillus blutaparonensis sp. nov., a Moderately Halophilic Bacterium Isolated from Blutaparon portulacoides Roots in Brazil

  • Barbosa Deyvison Clacino;Bae Jin-Woo;Weid Irene Von Der;Vaisman Natalie;Nam Young-Do;Chang Ho-Won;Park Yong-Ha;Seldin Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1862-1867
    • /
    • 2006
  • A moderately halophilic, Gram-positive, spore-forming bacterium was isolated from the roots of Blutaparon portulacoides, a plant found in sandy soil parallel to the beach line in Restinga de Jurubatiba, Rio de Janeiro, Brazil. The strain, designated $M9^T$, was motile and strictly aerobic with rod-shaped cells. It grew in the absence of NaCl and up to 20% NaCl, and was able to hydrolyze casein and starch. Strain $M9^T$ had a cell-wall peptidoglycan based on L-Orn-D-Asp, the predominant menaquinone present was menaquinone-7 (MK-7), diaminopimelic acid was not found, and anteiso-$C_{15:0}$ and iso-$C_{15:0}$ were the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain $M9^T$ belonged to the genus Halobacillus and exhibited 16S rRNA gene similarity levels of 97.8-99.4% with the type strains of the other nine Halobacillus species. The DNA-DNA relatedness of strain $M9^T$ with H. trueperi, the closest relative as regards 16S rRNA gene similarity, and H. locisalis was 21% and 18%, respectively. Therefore, on the basis of phenotypic, genotypic, and phylogenetic data, strain $M9^T$ (=ATCC BAA-$1217^T$, =CIP $108771^T$, =KCTC $3980^T$) should be placed in the genus Halobacillus as a member of a novel species, for which the name Halobacillus blutaparonensis sp. nov. is proposed.

Canola Plant Growth Promotion by a Selected Plant Growth Promoting-Rhizobacteria, Burkholderia pyrrocinia Strain 13-1 in the Cold Condition (고활성 근권생육촉진균주 Burkholderia pyrrocinia 13-1에 의한 저온조건에서의 유채생육촉진)

  • Lee, Jae-Eun;Cho, Sang-Min;Cho, Young-Eun;Park, Kyung-Seok
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.262-266
    • /
    • 2009
  • Plant growth-promoting rhizobacteria (PGPR) are beneficial native soil bacteria that colonize plant roots and result in increased plant growth. The objective of this study was to determine the plant growth promotion in canola plants by selected PGPR strain 13-1 under low temperature condition. The seed treatment of strain 13-1 was enhanced plant height and root elongation on canola plant at low temperature condition. This result determined that a selected strain of PGPR can enhance plant growth and root propagation under extremely low temperature conditions. Thus, this PGPR strain extends their role on plant growth promotion on canola until low temperature condition for practical applications.

Morphological and Phylogenetic Characteristics of a Nematophagous Fungus, Drechslerella brochopaga Kan-23 (국내 미기록종 선충포식성 곰팡이 Drechslerella brochopaga Kan-23의 형태 및 계통분류)

  • Cho, Chun-Hwi;Kang, Doo-Sun;Kim, Yoon-Ji;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • Strain Kan-23 was extracted from nematophagous fungi, which were isolated from the soil sample of oriental melon field. The strain exhibited the slow-growing characteristic forming conidia after prolonged incubation for 30 days. Morphological features of strain Kan-23 were observed under scanning electron microscope (SEM). It possesses erect conidiophores which contain $2{\sim}3$ side branches, with each branch producing $5{\sim}10$ conidia. The size of conidiophores were between $160{\sim}450\;{\mu}m$. Conidia were ellipsoidal with three septa[septum] in each conidium. Strain Kan-23 captured nematodes by means of giant constricting rings, which were observed in the glucose peptone agar medium. ITS region of rDNA sequence was analyzed. On the basis of the high sequence similarity of ITS region (99%), the Kan-23 strain was closely related to Drechslerella brochopaga (U51950). This is the first report on Drechslerella brochopaga as a nematophagous fungus in Korea.

Isolation of an Isocarbophos-Degrading Strain of Arthrobacter sp. scl-2 and Identification of the Degradation Pathway

  • Li, Rong;Guo, Xinqiang;Chen, Kai;Zhu, Jianchun;Li, Shunpeng;Jiang, Jiandong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1439-1446
    • /
    • 2009
  • Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. The strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. The strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a non detectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2-dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.

Isolation, Production, and Characterization of Protease from Bacillus subtilis IB No. 11

  • Lee, Min-Hyang;Lee, Kang-Moon;Choi, Yong-Jin;Baek, Yeon-Soo
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.527-536
    • /
    • 2009
  • A potent protein degrading bacterium was isolated from soil samples of different environments. Polyphasic taxonomic studies and phylogenetic 16S rRNA sequence analyses led to identify the isolate IB No. 11 as a strain of Bacillus subtilis. The isolated strain was recognized to produce protease constitutively, and the maximum production (1.64 units/ml) was attained in a shake flask culture when the isolate was grown at $40^{\circ}C$, for 32 h in basal medium supplemented with starch (0.25%) and gelatin (1.25%) as sole carbon and nitrogen source, respectively. The optimum pH and temperature for the protease activity were determined to be pH 7.0 and $50^{\circ}C$, respectively. $Ca^{2+}$ and $Mn^{2+}$ enhanced remarkably the protease activity but neither showed positive effect on the protease's thermal stability. In addition, it was observed that the protease was fairly stable in the pH range of 6.5-8.0 and at temperatures below $50^{\circ}C$, and it could be a good candidate for an animal feed additive. The inhibition profile of the protease by various inhibitors indicated that the enzyme is a member of serine-proteases. A combination of UV irradiation and NTG mutagenesis allowed to develop a protease hyper-producing mutant strain coded as IB No. 11-4. This mutant strain produced approximately 3.23-fold higher protease activity (6.74 units/mg) than the parent strain IB No. 11 when grown at $40^{\circ}C$ for 32h in the production medium. The protease production profile of the selected mutants was also confirmed by the zymography analysis.

Friction Characteristics on Interface Between Reinforcement and Sand by Direct Shear Test Methods (전단시험방법에 따른 토목섬유/모래 접촉면에서의 마찰특성)

  • Ju, Jae-Woo;Park, Jong-Beom;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • The most important part in the earth reinforcement is the interface between soil and the reinforcement. Shear strength and shear behavior in this interface make a great role relating to the reinforcement effect. This paper presents 2 kinds of direct shear test methods. one is the strain free shear test, called 'free method', that is performed by the free condition of allowing tensile strain. The other is the strain fix shear test, called 'fixed method', that is performed by the fixed condition of not allowing tensile strain. Two reinforcements were used such as nonwoven geotextile and geogrid. That is, interfaces are composed of geogrid/sand and geotextile/sand. From the test results it shows us that the fixed method had a greater friction angle and a smaller peak shear strain than those of the free method. Residual stress of the fixed method was bigger than that of the free method but the residual stress ratio was vice versa.

  • PDF

Isolation and Identification of the Crude Oil-degrading Psychrotrophic Bacterium and the Characteristics of OCT Plasmid (저온성 원유분해 세균의 분리동정 및 OCT 프라스미드 특성)

  • 김상진;윤희정
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 1993
  • Psychrotrophic bacterial strains utilizing crude oil as their sole carbon and energy sources were isolated from Antarctic soil and sea sediments. One of the strains named AI-I showed the hightest activity for emulsification of crude oil and the best growth. This strain was identified as Acinetobacter calcoaceticus. A. calcoaceticus AI-I strain contains a plasmid (OCT plasmid) which was related to the utilization of alkane compounds. The molecular weight of this plasmid was estimated to be about 110 Md by agarose gel electrophoresis. The cured strain of A. calcoaceticus AI-I strain (OCT ) was not able to utilize normal hydrocarbon compounds ($C_6C_{17}$) as carbon and energy sources. A. ca/coaceticus AI-1 was resistant to ampicillin and sensitive to streptomycin, kanamycin, chloramphenicol, tetracycline. The results suggested that this strain carries a plasmid (OCT) responsible for oil utilization which is quite stable and might be concerned with antibiotics resistancy.

  • PDF