• Title/Summary/Keyword: soil strain

Search Result 1,969, Processing Time 0.029 seconds

Isolation and Degradation Characteristics of 2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether Degrading Bacterium (2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether 분해균의 분리 및 분해특성)

  • Han, Nan-Sook;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The bacterial strains, which utilizes 2,4,4'-trichloro-2'-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highestt biodegradation activity was designated as EL-O47R The isolated strain EL-O47R was Identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH4)2SO4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the regradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-O47R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-O47R was moderately grown to Cd(NO3)2, ZnCl2, AgSO4, CuSO4 and HgCl2. This strain was sensitive to rifampicin and kanamycln but resistant to ampicillin, penicillin, tetracyclin and chloramphenlcol. Pseudomonas sp. EL-O47R was grown structurally related com- pounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.

  • PDF

Consolidation Model and Numerical Analysis for Soft Clay Ground Considering Characteristics of Material Function (물질함수특성을 고려한 연약 점토지반의 압밀모델 및 수치해석)

  • Jeon, Je-Sung;Yi, Chang-Tok;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 2004
  • Terzaghi's one-dimensional consolidation theory has some important assumption, which can't be applicable to predict the behavior of soft clay ground. Especially, predictions using infinitesimal strain and linear material function related with permeability can give rise to mistake in comparison with the result of real behavior in site. For this reason, Gibson et al. established a rigorous formulation for the one-dimensional nonlinear finite strain consolidation theory, which can consider non-linearity of material function. But it is difficult to apply this theory to predict the behavior of common soft clay ground with vertical drain. In this study, consolidation model which can consider the vertical and horizontal flow of a fully saturated clay layer, self-weight of soil and nonlinear characteristics of compressibility and permeability are derived. Numerical analysis scheme, which can be applied to consolidation analysis by derived consolidation model in this study was developed. The characteristics of material function were examined using laboratory testing such as standard consolidation test, Rowe-cell test and modified consolidation test.

A report of 31 unrecorded bacterial species in South Korea belonging to the class Gammaproteobacteria

  • Jung, Yong-Taek;Bae, Jin-Woo;Jeon, Che Ok;Joh, Kiseong;Seong, Chi Nam;Jahng, Kwang Yeop;Cho, Jang-Cheon;Cha, Chang-Jun;Im, Wan-Taek;Kim, Seung Bum;Yoon, Jung-Hoon
    • Journal of Species Research
    • /
    • v.5 no.1
    • /
    • pp.188-200
    • /
    • 2016
  • During recent screening to discover indigenous prokaryotic species in South Korea, a total of 31 bacterial strains assigned to the class Gammaproteobacteria were isolated from a variety of environmental samples including soil, tidal flat, freshwater, seawater, and plant roots. From the high 16S rRNA gene sequence similarity (>98.7%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to each independent and predefined bacterial species. There is no official report that these 31 species have been described in South Korea; therefore 5 species of 3 genera in the order Alteromonadales, 11 species of 3 genera in the order Pseudomonadales, 8 species of 6 genera in the order Enterobacteriales, 2 species of 1 genera in the order Vibrionales, 1 species of 1 genera in the order Oceanospirillales, 3 species of 3 genera in the order Xanthomonadales, and 1 species in the order Spongiibacter_o within the Gammaproteobacteia are reported for proteobacterial species found in South Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are also described in the species description section.

A report of 26 unrecorded bacterial species in Korea, belonging to the Bacteroidetes and Firmicutes

  • Kim, Haneul;Yoon, Jung-Hoon;Cha, Chang-Jun;Seong, Chi Nam;Im, Wan-Taek;Jahng, Kwang Yeop;Jeon, Che Ok;Kim, Seung Bum;Joh, Kiseong
    • Journal of Species Research
    • /
    • v.5 no.1
    • /
    • pp.166-178
    • /
    • 2016
  • An outcome of the study to discover indigenous prokaryotic species in Korea, a total of 26 bacterial species assigned to the classes Bacteroidetes and Firmicutes were isolated from diverse environmental samples collected from soil, tidal flat, freshwater, seawater, wetland, plant roots, and fermented foods. From the high 16S rRNA gene sequence similarity (>99.0%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to each independent and predefined bacterial species. There is no official report that these 26 species have been described in Korea; therefore 14 strains for the order Flavobacteriales and two strains for the order Cytophagales were assigned to the class Bacteroidetes, and 8 strains for the order Bacillales and 4 strains for the order Lactobacillales were assigned to the class Firmicutes are reported for new bacterial species found in Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are also described in the species description section.

Isolation and Characterization of Ethanol-Producing Schizosaccharomyces pombe CHFY0201

  • Choi, Gi-Wook;Um, Hyun-Ju;Kim, Mi-Na;Kim, Yule;Kang, Hyun-Woo;Chung, Bong-Woo;Kim, Yang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.828-834
    • /
    • 2010
  • An ethanol-producing yeast strain, CHFY0201, was isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w/v) ethanol at $30^{\circ}C$. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rDNA gene and the internally transcribed spacer (ITS) 1+2 regions, suggested that the CHFY0201 was a novel strain of Schizosaccharomyces pombe. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. pombe CHFY0201 in YPD media containing 9.5% total sugars were $0.59{\pm}0.01$ g/l/h and $88.4{\pm}0.91%$, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) powder in a 5-l lab-scale jar fermenter at $32^{\circ}C$ for 66 h with an agitation speed of 120 rpm. Under these conditions, S. pombe CHFY0201 yielded a final ethanol concentration of $72.1{\pm}0.27$ g/l and a theoretical yield of $82.7{\pm}1.52%$ at a maximum ethanol productivity of $1.16{\pm}0.07$ g/l/h. These results suggest that S. pombe CHFY0201 is a potential producer for industrial bioethanol production.

Identification and Antifungal Antagonism of Chryseomomas luteola 5042 against Phytophthora capsici (고추역병균 Phytophthora capsici의 생육을 저해하는 Chryseomonas luteola 5042의 선발과 항진균성 길항작용)

  • 윤경현;이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.186-193
    • /
    • 2001
  • A powerful antagonistic bacterium against Phytophthora capsici causing phytophthora blight of red pepper was isolated from the cultivated soil in Kyongju Korea, The bilogical control mechanisms of the isolated strain were caused by strong antifungal antibiotic, siderophore and cellulase. The strain was identified as Chryseomonas luteola by the cultural morphological and physiological characteristics. The opti- mal culture medium for the antibiotic production was determined as follows : 0.15%D(+) cellobiose, 0.55% $NH_4$CI, 0.01% KCI 0.7% $K_2$$HPO_4$ 0.2% $KH_2$PO$_4$ and 0.5% sodium citrate at pH 7.0 The optimal incubation time was 84 hours at $30^{\circ}C$ In pot bioassay, the treatment of C luteola 5042 protected red pepper plant against the blight of Phytophthora capsici.

  • PDF

Condition Assessment of Various Types of Road Cavities Using DEM (개별요소법을 활용한 도로하부 동공 상태 평가)

  • Kim, Yeonho;Park, Hyunsu;Kim, Byeongsu;Park, Seong-Wan
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.39-47
    • /
    • 2016
  • PURPOSES : Road subsidence occurs owing to road cavities, which cause many social and environmental problems, especially in cities. Recently, road cavities were detected by various ground radars and repair works were carried out against the detected cavities. The condition assessments related to the road cavities are necessary to understand the potential risk of the cavities. Therefore, in this study, a numerical study was performed to assess the various conditions of road cavities. METHODS : The numerical method adopted in this study is the discrete element approach, and it is suitable for analyzing the condition because it can consider the movement of the soil particles in the surrounded cavity areas. In addition, the triaxial test was modeled and performed under various cavity conditions inside the specimens. RESULTS : The conditions of different cavity locations and shapes were analyzed to identify the effect of cavity state. Three general cases of particle size distributions were formulated to identify the effect of surrounding ground conditions. As a result, the degree of decrement and volumetric strain were varied depending on the locations and shapes of the cavity. Only minor changes were observed when the particle size distributions were altered. CONCLUSIONS : The strength reduction was higher when the cavity formed was larger and located in the upper zone. Similar to the cavity shape, strength reduction and volume deformation are more influenced by the width than the length of the cavities. There is an influence from ground conditions such as the particle size distribution, especially on the wide cavity.

Geotechnical properties of gas hydrate bearing sediments (가스 하이드레이트 부존 퇴적토의 지반공학적 물성)

  • Kim, Hak-Sung;Cho, Gye-Chun;Lee, Joo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.151-151
    • /
    • 2011
  • Large amounts of natural gas, mainly methane, in the form of hydrates are stored on continental margins. When gas hydrates are dissociated by any environmental trigger, generation of excess pore pressure due to released free gas may cause sediment deformation and weakening. Hence, damage on offshore structures or submarine landslide can occur by gas hydrate dissociation. Therefore, geotechnical stability of gas hydrate bearing sediments is in need to be securely assessed. However, geotechnical characteristics of gas hydrates bearing sediments including small-strain elastic moduli have been poorly identified. Synthesizing gas hydrate in natural seabed sediment specimen, which is mainly composed of silty-to-clayey soils, has been hardly attempted due to their low permeability. Moreover, it has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in specimen scale play a critical role in determining physical properties of hydrate bearing sediments. In the presented study, we synthesized gas hydrate containing sediments in an instrumented oedometric cell. Geotechnical and geophysical properties of gas hydrate bearing sediments including compressibility, small-strain elastic moduli, elastic wave, and electrical resistivity are determined by wave-based techniques during loading and unloading processes. Significant changes in volume change, elastic wave, and electrical resistivity have been observed during formation and dissociation of gas hydrate. Experimental results and analyses reveal that geotechnical properties of gas hydrates bearing sediments are highly governed by hydrate saturation, effective stress, void ratio, and soil types as well as morphological feature of hydrate formation in sediments.

  • PDF

Production of Biopolymer Flocculant by Bacillus subtilis TB11

  • Yoon, Sang-Hong;Song, Jae-Kyeung;Go, Seung-Joo;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.606-612
    • /
    • 1998
  • A microbial flocculant-producing gram-positive bacterium, strain TE11, was isolated from soil samples, and was identified as Bacillus subtilis by using the Midi system, the Biolog system, 16S rDNA sequence analysis, and some physiological and morphological characteristics. The maximum flocculant capsular biopolymer of TE11 strain (BCP, 4.9mg/ml) was obtained when it was grown in GA broth medium containing 3% glutamic acid, 2% glycerol, 0.5% citric acid, 0.5% $NH_4$Cl, 0.05% $MgSO_4.7H_2O,\; 0.05%\;K_2HPO_4\;,\; and\; 0.004%\; FeC1_3. 6H_2O,\; pH 7.2,\; at\; 30^{\circ}C$ for 70 h with shaking. When glycerol was used as an additional carbon source in the GA medium, TE11 produced only flocculant BCP without any by-product. The flocculant (BCP) was found to aggregate suspended kaolin and activated charcoal powder without cations, and its flocculating activity was significantly enhanced by the addition of bivalent cations such as $Ca^{2+}.Zn^{2},\; and\; Mn^{2+}$. The flocculation activity by addition of $Ca^{2+}$ was high in an acidic pH 4.0. In the case of $Zn^{2+}$, high flocculating activity remained without significant loss in the broad range of pH 4.0 to 9.0.

  • PDF

Gene Cloning of Streptomyces Phospholipase D P821 Suitable for Synthesis of Phosphatidylserine

  • Moon Min-Woo;Lee Jung-Kee;Oh Tae-Kwang;Shin Chul-Soo;Kim Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.408-413
    • /
    • 2006
  • A strain, P821, with phospholipase D activity was isolated from soil and identified as a Streptomyces species. The phospholipase D enzyme was purified from a culture broth of the isolated strain using ammonium sulfate precipitation and DEAE-Sepharose, phenyl-Sepharose, and Superose 12 HR column chromatographies. The purified enzyme exhibited an optimum temperature and pH of $55^{\circ}C$ and 6.0, respectively, in the hydrolysis of phosphatidylcholine and remained stable up to $60^{\circ}C$ within a pH range of 3.5-8.0. The enzyme also catalyzed a transphosphatidylation reaction to produce phosphatidylserine with phosphatidylcholine and serine substrates. The optimum conditions for the transphosphatidylation were $30^{\circ}C$ and pH 5.0, indicating quite different optimum conditions for the hydrolysis and transphosphatidylation reactions. The gene encoding the enzyme was cloned by Southern hybridization and colony hybridization using a DNA probe designed from the conserved regions of other known phospholipase D enzymes. The resulting amino acid sequence was most similar to that of the PLD enzyme from Streptomyces halstedii (89.5%). Therefore, the enzyme was confirmed to be a phospholipase D with potential use in the production of phosphatidylserine.