• Title/Summary/Keyword: soil site

Search Result 2,637, Processing Time 0.041 seconds

Forest Floor Biomass, Litterfall and Physico-chemical Properties of Soil along the Anthropogenic Disturbance Regimes in Tropics of Chhattisgarh, India

  • Oraon, P.R.;Singh, Lalji;Jhariya, Manoj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.5
    • /
    • pp.359-375
    • /
    • 2018
  • The long term ecological effects have been reported in natural forest ecosystem due to various anthropogenic disturbances, especially in tropics of the world. The present study was carried out in the sanctuary area of central India to assess the changes on litter biomass, litterfall pattern and soil attributes under different disturbance regimes. The study area includes three forest circles i.e., Bhoramdeo, Jamunpani and Salehwara each comprising three disturbances regimes viz., high, medium and low severity of biotic pressure. A noticeable variation and impact were recorded in different sites. The impact varies significantly from least disturbed sites to highly disturbed sites across the circle and among different disturbances level. The seasonal mean total forest floor biomass across the forest circles varied from 2.18 to $3.30t\;ha^{-1}$. It was found highest under lightly disturbed site and lowest under heavily disturbed site. Total litterfall varied from 5.11 to $7.06t\;ha^{-1}\;yr^{-1}$ across the forest circle. Lowest litterfall was recorded at heavily disturbed site while highest in lightly disturbed site. Annual turnover of litter varied from 69-73% and the turnover time ranged between 1.37-1.45 years. The turn over time was higher for heavily disturbed site and lower for lightly disturbed site. The heavily disturbed site of all the circle showed the sandy loam soil texture, whereas moderately and lightly disturbed site comprised of sandy loam, sandy clay loam and clay soil texture, respectively. The bulk density decreases from heavily disturbed site to lightly disturbed site and the pH of soils ranged from 5.57-6.89 across the circle. Across the circle the total soil nitrogen ranged from 0.12-0.21%, phosphorus from 10.03-24.00 kg and Potassium from $139.88-448.35kg\;ha^{-1}$, respectively. Our results demonstrate that anthropogenic disturbances regime significantly influences forest floors in terms of mass, composition and dynamics along with litterfall rate and soil properties.

산악지역 내 LNAPL 오염의 개념모델 정립을 위한 사례연구

  • Kang, U-Jae;Gong, Jun;Jeon, Jin-Oh;Lee, Sang-Bong;Hwang, Jong-Sik;Bae, U-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.85-88
    • /
    • 2001
  • Since mountainous area has access restrictions for field work, assessors need to establish a conceptual model of the contamination prior to the field investigation. In this study we established a conceptual model of the contamination based on site inspection and geological survey, followed by the field investigation for the petroleum spill site. In the conceptual model, we estimated that tile contamination should have spread by groundwater and topographical characteristics within the top soil layer. The spread of contamination through rock was not considered in the conceptual model due to impermeable characteristics of metasyenite. The contaminated environmental media of the petroleum spill site include soil and groundwater. According to the analysis result of the contamination, the volume of contaminated soil is estimated approximately 4, 150 cubic meters (7, 055 ton) with most contaminants existing along the groundwater flow within top soil layer.

  • PDF

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

Influence of Forest Practices on Soil Physical Properties and Facility of Purifying Water Quality in Pinus rigida Stands (리기다소나무 임분에서 산림관리작업이 토양의 물리성 및 산림의 수질정화기능에 미치는 영향)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.61-70
    • /
    • 2007
  • This study aims to clarify the effect of forest management practices(thinning and pruning) on soil physical properties and water quality to get the fundamental information on the facility of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study site which consists of Pinus rigida in Jinju National University Experimental Forest for 4 years from Mar. 1, 2002 to Nov. 30, 2006. Averaged tree height of the management site increased by 1.6m, compared to the value of the non-management site in Pinus rigida. Increment of averaged D. B. H. at the management site showed 4.2cm more in Pinus rigida compared with that at non-management sites. Mesopore ratios (pF2.7) and total porosities of A layer soil at the management site increased more than those at the non-management sites in both stands. Otherwise, soil bulk density resulted in being reversely. Water qualities of throughfall, stemflow and buffered soil water were influenced more positively by the management practice. The average electrical conductivity of stream water was $32.9{\mu}S/cm$ within the range of non-polluted stream water.

Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan

  • Aziz, Mubashir;Khan, Tanveer A.;Ahmed, Tauqir
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.475-488
    • /
    • 2017
  • Geotechnical data contributes substantially to the cost of engineering projects due to increasing cost of site investigations. Existing information in the form of soil maps can save considerable time and expenses while deciding the scope and extent of site exploration for a proposed project site. This paper presents spatial interpolation of data obtained from soil investigation reports of different construction sites and development of soil maps for geotechnical characterization of Multan area using ArcGIS. The subsurface conditions of the study area have been examined in terms of soil type and standard penetration resistance. The Inverse Distance Weighting method in the Spatial Analyst extension of ArcMap10 has been employed to develop zonation maps at different depths of the study area. Each depth level has been interpolated as a surface to create zonation maps for soil type and standard penetration resistance. Correlations have been presented based on linear regression of standard penetration resistance values with depth for quick estimation of strength and stiffness of soil during preliminary planning and design stage of a proposed project in the study area. Such information helps engineers to use data derived from nearby sites or sites of similar subsoils subjected to similar geological process to build a preliminary ground model for a new site. Moreover, reliable information on geometry and engineering properties of underground layers would make projects safer and economical.

Impacts of Soil Microbial Populations on Soil Chemical and Biological Properties under Tropical Dry Evergreen Forest, Coromandel Coast, India

  • Sudhakaran, M.;Ramamoorthy, D.;Swamynathan, B.;Ramya, J.
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.370-377
    • /
    • 2014
  • There are very few studies about soil chemical and biological properties under tropical dry evergreen forest Coromandel Coast, India. The present study was conducted in six tropical dry evergreen forests sites such as Oorani, Puthupet, Vadaagram, Kotthatai, Sendrakillai and Palvathunnan. We measured the quantity of soil chemical, biological properties and selected soil microorganisms for investigating the impacts of soil microbial populations on soil chemical and biological properties. The result showed that total N, P, Ca, S, Fe, Mn, Cu, Co, exchangeable K, Olson P, extractable Ca and phosphobacterial population were higher in the soil from Kothattai forest site. Organic carbon, total Mg, extractable Na, soil respiration, ${\beta}$-glucosidase activity, bacterial population, fungi population and actinomycetes population were higher in the soil from Palvathunn forest site. Total K, $NH_4{^+}$-N, $NO_3{^-}$-N, exchangeable K, extractable Ca, extractable Na, azotobacter population, bacillus population and rhizobacteria population were higher in the soil from Sendrakillai. Beijerinckia population, rhizobacteria and soluble sodium were higher in Puthupet forest soil. Total Si, total Na and exchangeable K were higher in soil from Oorani forest site. Total Mo and exchangeable K were higher in the soil from Vadaagaram forest site. The results showed that organic carbon, total N, $NH_4{^+}$-N, $NO_3{^-}$-N, extractable P, extractable Ca, soil respiration and ${\beta}$-glucosidase were significantly correlated with soil microbial populations. Therefore soil microorganisms are important factor for maintaining soil quality in tropical dry evergreen forest.

Biopile을 이용한 유류 오염토양의 복원에 관한 연구

  • 박종천;오재영;정용욱;이우범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.310-314
    • /
    • 2002
  • To investigate the effect of on-site bioremediation in soil that have been contaminated by hydrocarbon fuel spills, petroleum-degrading bacteria isolated from soil around petroleum chemical industry and microbial agents were constructed. We investigated biopiles for on-site bioremediation of soil contaminated (5000 mg per kg) with bunker A fuel in five independent lab-scale experiments. Five biopile units constituting the following treatments: (1) control with no nutrients and microbial agents (2) microbial agent M plus nutrients (3) microbial agent C plus nutrients (4) only microbial agent C (5) control with only nutrients. The results were highly different one another. After 30 days in treatments with optimal condition, total petroleum hydrocarbons were reduced to below 10 mg per kg of soil at the biopile units mixed with microbial agents, but control biopile units show that were reduced from 1,105 to 2,588 mg per kg of soil. Our results show that microbial agents at on-site bioremediation of fuel-contaminated soil is highly effective.

  • PDF

Estimation of Forest Productive Area of Quercus acutissima and Quercus mongolica Using Site Environmental Variables (산림 입지토양 환경요인에 의한 상수리나무와 신갈나무의 적지추정)

  • Lee, Seung-Woo;Won, Hyung-Kyu;Shin, Man-Yong;Son, Young-Mo;Lee, Yoon-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.429-434
    • /
    • 2007
  • This study was conducted to estimate site productivity of Quercus acutissima and Quercus mongolica by four forest climatic zones. We used site environmental variables (28 geographical and pedological factors) and site index as a site productivity indicator from nation-wide 23,315 stands. Based on multiple regression analysis between site index and major environmental variables, the best-fit multivaliate models were made by each species and forest climatic zone. Most of site index prediction models by species were regressed with seven to eight factors, including altitude, relief, soil depth, and soil moisture etc. For those models, three evaluation statistics such as mean difference, standard deviation of difference, and standard error of difference were applied to the test data set for the validation of the results. According to the evaluation statistics, it was found that the models by climatic zones and species fitted well to the test data set with relatively low bias and variation. Also having above middle of site index range, total area of productive sites for the two Quercus spp. estimated by those models would be about 6% of total forest area. Northern temperate forest zone and central temperate forest zone had more productive area than southern temperate forest zone and warm temperate forest zone. As a result, it was concluded that the regressive prediction with site environmental variables by climatic zones and species had enough estimation capability of forest site productivity.

Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest Effects of Fire on KDICical Properties of Soil and Runoff, and Phytomass in Pinus densiflora Forest (산화가 소나무림의 토양과 유출수의 화학적 성질 및 식물량에 미치는 영향)

  • Choung, Yeon Sook;Joon Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.129-138
    • /
    • 1987
  • In a red pine (Pinus densiflora) forest, changes of pH, electric conductivity, total carbon, total nitrogen, available phosphate and available potassium in soil and runoff have been studied at intervals for 1 year after early spring fire. Phytimasses of herb and shrub were measured following the current and the subsequent year. The pH, E.C., total nitrogen and phosphate of soil in burned site wee 1.1, 1.5, 1.6 and 2.0 times higher than in unburned site, respectively. But potassium showed no significant difference. A rise in pH, E.C., and total nitrogen in burned site were maintained throught the study period while phosphate maintained 4 months after the fire. The E.C., total carbon, $NO_2-N$ and $NH_4-N$ of runoff in burned site were 1.3, 1.3, 1.3 and 29.0 times higher than in unburned site, respectively, while $NO_3-N$ in unburned site was 4 times higher than in burned site. In burned site, phytomasses of herb and shrub were 148 and 33% of unburned site in a current year and 107 and 51% in a subsequent year, respectively. The considerable amount of increase in soil nutrient after the fire was conserved by the uptake of the fast regrowing plants and by the immobilization of $NH_4=N$.

  • PDF

Assessment of Soil Washing Efficiency for Arsenic Contaminated Site Adjacent to Jang Hang Refinery (장항제련소 주변 비소오염토양의 특성분석에 따른 토양세척 처리효율 평가)

  • Moon, So-Young;Oh, Min-Ah;Jung, Jun-Kyo;Choi, Sang-Il;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Cause of contamination in the study area nearby Jang Hang Refinery is dust scattering in refinery stack, and soil washing treatment is one of the proper technologies for soil remediation in this area. Site conditions frequently limit the selection of a treatment process. A treatment technology may be eliminated based on the soil classification or physicochemical characteristics of soil. This study was assessed the soil washing efficiency by conducting of soil characteristic analysis in the vicinity of Jang Hang Refinery Stack within a 2 km radius. Also, it was decided about remedial range with comparative analysis of As in soil by Korean Standard Test Method before/after revision, whereupon As concentration in soil showed a increasing tendency after revision. As a result, the soil washing using the size separation of soil was determined through identifying of As species in the soil. In this site, only particle size distribution and water content of soil can provide the initial means of screening for the potential use of soil washing.