• Title/Summary/Keyword: soil settlement

Search Result 924, Processing Time 0.024 seconds

Experimental study on the ground movement due to consecutive construction of retaining wall and underground space in cohesionless soil (사질토 지반에서 흙막이벽체-지하공간 연속 굴착에 따른 지반거동에 대한 실험적 연구)

  • Park, Jong-Deok;Yu, Jeong-Seon;Kim, Do-Youp;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.267-281
    • /
    • 2015
  • The ground movement and changes in earth pressure due to the consecutive construction of retaining wall and underground space were studied experimentally. A soil tank having 160 cm in length and 120 cm in height, was manufactured to simulate the vertical excavation like retaining wall by using 10 separated right side walls and underground space excavation like tunnel by using 5 separated bottom walls. The variation of earth pressure and surface settlement were measured according to the excavation stages. The results showed that the decrease of earth pressure due to the wall movement can cause the increase of earth pressure of the neighboring walls proving the arching effect. Experiments simulating continuous construction sequence also identified arching effect, however only 50% of earth pressure was restored on the 10th right side wall due to the movement of 1st bottom side wall unusually.

Case Study of Stress Concentration Ratio of Composite Ground Improved by Deep Cement Mixing Method (심층혼합처리공법으로 개량된 복합지반의 응력분담비에 대한 사례 연구)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3216-3223
    • /
    • 2012
  • Deep cement mixing method (DCM) is one of the most effective improving methods for deep soft ground. The strength of soft soil can be increased in a short period of time with less noise and vibration. However, it is necessary to determine the stress transferring and concentration ratio of the composite soft ground for estimating the settlement behaviors. In this study, a model test was undertaken to investigate the stress distribution of the improved soil. Results of the model test shows that stresses were concentrated mainly on the improved areas by DCM and the concentration ratios (35.4, 28.6, 27.02) were obtained using several different techniques. These were well in accordance with other previous research results (26.52, 32.5).

Optimization Techniques for Soil Parameters used in Axisymmetric Nonlinear Consolidation Analysis (축대칭 비선형 압밀해석을 위한 지반정수값의 최적화기법)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.131-144
    • /
    • 1996
  • In order to accelerate the rate of consolidation settlement and to gain a required shear strength for a given soft clay deposit, the preloadina technique combined with a vertical drainage system has been widely applied. Even if a sophisticated numerical analysis technique is applied to solve the consolidation behavior of drainage-installed soft deposits, the actual field behavior is often different from the behavior predicted in the design state due to several uncertainties involved in soil properties, numerical modelling, and measuring system. In this paper, two back-analysis schemes such hs simplex and BFGS methods have been implemented in an a Bisymmetric consolidation program, AXICON which considers the variation of compressibility and permeability during the consolidation process. Utilizing the program, one might be able to appropriately predict the subsequent consolidation behavior from the measured data in an early stage of consolidation of drainage-installed soft deposits.

  • PDF

Influence of the Anchor Slope on Behaviour of Sheet Pile (앵커의 경사(傾斜)가 널말뚝의 거동(擧動)에 미치는 영향(影響))

  • Chun, Byung Sik;Kang, In Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.79-87
    • /
    • 1989
  • The influence of anchor slope on behavior of sheet pile is analysed by results of model test. It can be seen that the larger inclination of anchor causes more causes more increases of the horizontal and vertical deflection of wall, but the bending moment is less influenced by the inclination of anchor. The negative friction against vertical settlement of wall has the yielding point at the excavation level of 0.71-0.80 H. The redistribution of earth pressure on the sheet pile with dredging must be considered by soil-arching. The zero pressure point from the toe of wall is 20% higher than that of the Free Earth Support Method. It is also observed that the angle of failure planes to major principal plane is larger than the angle of $45^{\circ}+{\phi}/2$.

  • PDF

Electrical Resistivity Survey at the Ground with Micro-subsidence by Excessive Pumping of Groundwater (지하수 과잉양수에 따른 미세 지반변형 지역에서의 전기비저항 탐사)

  • Song Sung-Ho;Lee Kyu-Sang;Yong Hwan-Ho;Kim Jin-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.197-206
    • /
    • 2004
  • Because the minute displacement of ground accompanied by excessive pumping of groundwater at specified site is mainly generated from ill-balancing of water budget within groundwater basin, It is necessary to monitor the variation of micro-subsidence for a long time at representative points. We made up the conceptual model using two-dimensional electrical resistivity survey and three-dimensional soil profile consisted of loam and sand. In verifying the reliability of this conceptual model using numerical modeling for ground settlement and groundwater flowing, two-dimensional electrical resistivity survey with short distance of electrode following soil sampling with hand auger would be useful for interpreting hydrogeological structure related to the minute displacement of ground consisted of loam and sand.

A Study of Landfill Coyer Liners by Freezing/Thawing (동결/융해에 따른 폐기물 매립지 복토층 연구)

  • Jai-Young Lee
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • The cover liners at municipal and hazardous waste landfill is not emphasized as much as the bottom liners. However, one of the most effective reason of landfill destroy is the cover liner failure. The cover system at municipal and hazardous waste landfill, 1 perform the following functions, at minimum: promote surface runoff, impede infiltration, protect settlement in the landfill, and provide a buffer from surface exposure of the waste. This research was to expand the existing knowledge base of landfill cover liner behavior during period of freeze/thaw Also, the great Lysimeter was built in the laboratory to provide as much as same condition with the field and three designs were simulated by actual cover materials. The result of simulation indicated the clay was effected by freezing/thawing. The degradation of cover liners in the frost penetration affects the physical, engineering properties of clay. these factors may consider to design and construct of the landfill. This paper provides the description of testing cover liners, experimental results and a discussion of the results of the simulation.

  • PDF

Centrifugal Modelling on the Displacement Mode of Unpropped Diaphragm Wall with Surcharge (과재하중이 있는 Unpropped Diaphragm Wall의 변위양상에 관한 원심모델링)

  • 허열;이처근;안광국
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.135-145
    • /
    • 2004
  • In this study, the behavior of unpropped diaphragm walls on decomposed granite soil was investigated through centrifugal and numerical modelling. Centrifuge model tests were performed by changing the interval distance of surcharge. Excavation was simulated during the centrifuge tests by operating a solenoid valve that allowed the zinc chloride solution to drain from the excavation. In these tests, ground deformation, wall displacement and bending moment induced by excavation were measured. FLAC program which can be able to apply far most geotechnical problems was used in the numerical analysis. In numerical simulation, Mohr-Coulomb model fur the ground model, an elastic model for diaphragm wall were used for two dimensional plane strain condition. From the results of model tests, failure surface was straight line type, the ground of retained side inside failure line had downward displacement to the direction of the wall, and finally the failure was made by the rotation of the wall. The angle of failure line was about 67 ∼ 74$^{\circ}$, greater than calculated value. The locations of the maximum ground settlement obtained from model tests and analysis results are in good agreements. The displacement of wall and the change of the embedment depth is likely to have linear relationship.

Minimum Thickness of Temporary Steel Plate to Prevent Pile Driver Overturning (항타기 전도예방을 위한 임시 철판의 두께에 관한 연구)

  • Bang, Daepyung;Park, Jongyil;Kee, Junghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.5-10
    • /
    • 2020
  • Although pile driver overturning accidents at construction site are not frequent, most leads to serious disasters. The main cause of accidents is uneven settlement of the ground. To prevent this, related guidelines such as KOSHA-C-101-2014, KOSH-A-GUIDE-71-2012, Occupational Safety and Health Standards, and NCS stipulate the installation of steel plates over ground. However, since the required steel plate thickness considering the self-weight of pile drivers and the underlying ground condition is not quantitatively presented, it is randomly applied in the field. In this study, the required minimum steel plate thickness was analyzed based on a numerical analysis (Plaxis 2D). Settlements and soil failure were calculated according to the different type of soils (sand, clay), load distribution and steel plate thickness (10mm, 20mm, 30mm, 40mm). Under all conditions, 10mm steel plate causes soil collapse. From thickness 20mm, the ground uneven subsidence is within 2° of the allowable leader angle.

Deformation Behavior Underground Pipe with CLSM (유동성 채움재를 이용한 지하 매설관의 변형특성 연구)

  • Park, Jae-Hun;Lee, Kwan-Ho;Jo, Jae-Yun;Sung, Sang-Kyu
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.25-35
    • /
    • 2003
  • During construction of circular lifeline pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency are the main problems to induce the failure of underground pipe. The use of CLSM(controlled low strength materials) is one of the applications to overcome those problems. In this research, the numerical analysis by PENTAGON FEM program was carried out for 20 cases with the couple of combinations on bedding materials, backfill materials, and pipes. From the FEM analysis, the use of CLSM as backfill materials reduced the settlement of ground surface and the deformation of pipe employed. In case of the vertical deformation on the pipe, common soil backfill for flexible pipes showed 2 times for rigid pipes, but CLSM backfill case did less deformation than the soil backfill for rigid pipes. CLSM backfills for rigid pipes showed the similar results. Judging from the FEM analysis, the use of CLSM increases the structure capacity of the underground pipes.

  • PDF

Characteristics of Negative Skin Friction of Foundation Pile and Construction Management by Experimental Field Test (현장시험을 통한 기초 말뚝 부마찰력의 특성과 시공관리)

  • Hong, Seok-Woo
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • In this study the negative skin friction test of foundation pile was performed in order to monitor the negative skin frictional force acting on the steel pipe pile installed in soft soil. The monitored frictional stresses obtained from the long-term loading test. Through the long-term frictional stress monitoring test, the economical period for the construction of the superstructure was determined. The following conclusion were derived from this study: (1) In soft soil, negative skin friction increases with the increase in the rate of settlement. (2) In the friction relationship graph, the period where there is no frictional strain increase is verified and the time for the construction of the superstructure is determined. (3) The pile loading test was performed and the negative skin friction was compared with the test results. It was determined that the negative skin friction after driving was larger than the negative skin friction obtained from the loading test. 15 days after the construction, the monitored value was similar with the theoretical data. (4) It was determined that even during the occurrence of negative skin friction an economical construction management can be performed using the long-term monitoring method of negative skin friction.