DOI QR코드

DOI QR Code

Minimum Thickness of Temporary Steel Plate to Prevent Pile Driver Overturning

항타기 전도예방을 위한 임시 철판의 두께에 관한 연구

  • Bang, Daepyung (Hyudai Engineering & Construction Safety Team) ;
  • Park, Jongyil (Department of Safety Engineering, Seoul National University of Science and Technology) ;
  • Kee, Junghun (Department of Safety Engineering, Seoul National University of Science and Technology)
  • Received : 2020.08.14
  • Accepted : 2020.10.05
  • Published : 2020.11.01

Abstract

Although pile driver overturning accidents at construction site are not frequent, most leads to serious disasters. The main cause of accidents is uneven settlement of the ground. To prevent this, related guidelines such as KOSHA-C-101-2014, KOSH-A-GUIDE-71-2012, Occupational Safety and Health Standards, and NCS stipulate the installation of steel plates over ground. However, since the required steel plate thickness considering the self-weight of pile drivers and the underlying ground condition is not quantitatively presented, it is randomly applied in the field. In this study, the required minimum steel plate thickness was analyzed based on a numerical analysis (Plaxis 2D). Settlements and soil failure were calculated according to the different type of soils (sand, clay), load distribution and steel plate thickness (10mm, 20mm, 30mm, 40mm). Under all conditions, 10mm steel plate causes soil collapse. From thickness 20mm, the ground uneven subsidence is within 2° of the allowable leader angle.

건설 현장에서 항타기 전도 사고는 빈도는 낮으나 발생 시 심각한 피해를 야기한다. 항타기 전도 사고의 주원인은 침하에 의한 모멘트 발생임에도 불구하고 KOSHA-C-101-2014, KOSH-A-GUIDE-71-2012, 산업안전보건 기준, NCS 등의 규정에서 철판 사용에 대한 선언적 내용만 있을 뿐 구체적인 요구조건이 명시되어 있지 않다. 이에 항타기 자중, 지반조건에 따라 하부 철판의 제원이 바뀌어야 하지만 현장에서는 임의로 사용되고 있다. 본 연구에서는 수치 해석(Plaxis 2D)을 기반으로 요구되는 최소 철판 두께를 분석 하였다. 토양의 종류(모래, 점토), 하중 분포, 철판 두께(10mm, 20mm, 30mm, 40mm)에 따라 침하 정도와 및 지반 항복 유무를 산출하였으며, 그 결과 모든 조건에서 두께 10mm 철판은 지반 항복을 유발하였다. 두께 20mm부터는 지반 침하로 발생하는 회전각이 허용치인 2° 이내로 분석되었다.

Keywords

References

  1. Choi, B. I. (2015), Dynamic analysis of 3 different cross-sectional shapes of a fill dam using 3D FEM analysis, Journal of the Korean Geo-Environmental Society, Vol. 16, No. 8, pp. 37-43. https://doi.org/10.14481/jkges.2015.16.8.37
  2. Chung, C. H. (1991), An analysis on the distribution and the engineering characteristics of silty marine clay in Korea, Ph. D thesis, Dongguk University, pp. 89-108.
  3. Hwang, S., Im, J., Kwon, J., Kang, Y. and Joo, I. (2010), A study on a compression index for settlement analysis of SCP treated ground using back analysis, Journal of the Korean Geoenvironmental Society, Vol. 11, No. 7, pp. 5-14.
  4. Kim, D., Cho, H., Park, J. and Lim, Y. (2015), Stiffness modulus comparison in trackbed foundation soil, International Journal of Railway, Vol. 8, No. 2, pp. 50-54. https://doi.org/10.7782/IJR.2015.8.2.050
  5. Kim, G., Ahn, K., Min, K. and Jung, C. (2013), Behavior characteristics of underreamed ground anchor through field test and numerical analysis, Journal of the Korean Geoenvironmental Society, Vol. 14, No. 8, pp. 37-44.
  6. Korea Construction Equipment Association press release, (2018), Construction machinery registration status.
  7. National Competency Standards, (2019), Pile driver.Pile drawer guidelines for use.
  8. "Pile Driver", https://www.csi.go.kr/index.do (2020.5)
  9. The Korea Occupational Safety and Health Agency (KOSHA), (2017), Case and Countermeasure of Construction Critical Accidents, pp. 113-114.
  10. The Korea Occupational Safety and Health Agency (KOSHA), (2014), Pile driver.Pile drawer guidelines for use, KOSHA-C-101-2014.
  11. The Korea Occupational Safety and Health Agency (KOSHA), (2012), Guidelines for working on ready-made concrete files Pile driver Health and Safety, KOSHA-GUIDE-C-71-2012.