• Title/Summary/Keyword: soil saturation

Search Result 454, Processing Time 0.024 seconds

Water Requirement of Green Peppers in Greenhouse (온실재배 풋고추의 소비수량(농업시설))

  • 이근후;이종창;윤용철;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.327-332
    • /
    • 2000
  • This study was carried out to investigate the water requirement of green peppers which are cultivated in a greenhouse under the different soil water conditions. The meteorological conditions during the experiment period was not predominantly different from the conditions in a normal year. The highest leaf area per plant, plant height, and yield were 6,143$\textrm{cm}^2$/plant, 107cm, and 751g/plant, respectively. And daily variation of water requirements of green peppers ranged from 30 to 1,250g/d/plant which was fluctuated with significant difference. Total water requirements per plant which cultivated under the soil water conditions with different saturation ratios were 23,619g for P100, 43,044 for P80, and 2915g for P60, respectively. There were close correlation between plant height and water requirements. Low correlations were found between greenhouse ambient temperature and water requirement, while significant linear regression was shown between both of humidity and solar radiation and water requirement.

  • PDF

Development of Large Calibration Chamber System (Large Calibration Chamber의 개발)

  • 정충열;김태준;김대규;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.673-678
    • /
    • 2002
  • Laboratory calibration chamber tests for cone penetrometers, pressuremeters and dilatometers in cohesionless soil specimens have been conducted by numerous researchers. However, there have been only few applications to compacted or preconsolidated cohesive soils. Therefore, for the first time, Calibration Chamber System was developed in Korea University. This can be attributed to the extremely time consuming and laborious process involved in the preparation of large cohesive soil specimens in addition to other complexities involving instrumentation for pore pressure monitoring and the need for maintaing saturation by back pressure. Chamber System with similar principle as LSU Chamber System was made of more strengthen and complementary form by increasing system diameter(1.2m), carrying out 1st and 2nd consolidation process in one system for smooth and safe work, accurate Data Aquisition.

  • PDF

Experimental Study on the Slope Failure of Embankment (성토사면의 붕괴에 관한 실험적 연구)

  • 강우묵;이달원;지인택;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.47-62
    • /
    • 1993
  • The laboratorv model test was carried out to investigate the behavior of pore water pressure, the critical amount of rainfall for slope failure, the pattern of failure, and the variation of seepage line at the slope with the uniform material of embankment by changing the slope angles and rainfall intensities. The results were was summarised as follows : 1.At the beginning stage of rainfall, the negative pore pressure appeared at the surface of slope and the positive pore pressure at the deep parts. But, the negative one turned into the positive one as the rainfall continued and this rapidly increased about 50 to 100 minutes before the slope failure. 2.The heavier the rainfall intensity, the shorter the time, and the milder the slope, the longer the time took to reach the failure of slope. 3.As the angle of the slope became milder, the critical amount of rainfall for slope failure became greater. 4.Maximum pore water pressure was 10 to 40g/cm$^2$ at the toe of slope and 50 to 90g/cm$^2$at the deep parts. 5.In the respect of the pattern of slope failure, surface failure of slope occurred locally at the toe of slope at the A-soil and failure of slope by surface flow occurred gradually at the top part of slope at the B-soil. 6.As the rainfall continued and the saturation zone in the embankment was formed, the seepage line went rapidly up and also the time to reach the total collapse of slope took longer at the B-soil. 7.As the position of the seepage line went up and the strength parameter accordingly down, the safety factor was 2.108 at the A-soil and 2.150 at the B-soil when the slope occured toe failure. Minimum safety factor was rapidly down to 0.831 at the A-soil and to 0.936 at the B-soil when the slope collapsed totally at the top part of slope.

  • PDF

Studies on the Development of Bearing Capacity Reinforcement for the Foundation of Soil (기초지반의 지지력보강공법에 관한 연구)

  • 유동환;최예환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.38-49
    • /
    • 1988
  • This paper presented as follows results of laboratory model tests with various shaped footings on soil bed reinforced with the strips on the base of behaviour of soil structure according to the loads and triaxial test results reinforced with geotextiles. Their parameters studied were the effects on the bearing capacity of a footing of the first layer of reinforcement, horizontal and vertical spacing of layers, number of layers, tensile strength of reinforcement and iclination load to the vertical 1.Depending on the strip arrangement, ultimate bearing capacity values could be more improved than urreinforced soil and the failure of soil was that the soil structure was transfered from the macrospace to microspase and its arrangement, from edge to edge to face to face. 2.The reinforcement was produced the reinforcing effects due to controlling the value of factor of one and permeable reinforcement was never a barrier of drainage condition. 3.Strength ratio was decreased as a linear shape according to increment of saturation degree of soil used even though at the lower strength ratio, the value of M-factor was rot influenced on the strength ratio but impermeable reinforcement decreased the strength of bearing capacity. 4.Ultimate bearing capacity under the plane-strain condition was appeared a little larger than triaxial or the other theoretical formulars and the circular footing more effective. 5.The maximum reinforcing effects were obtained at U I B=o.5, B / B=3 and N=3, when over that limit only acting as a anchor, and same strength of fabric appeared larger reinforcing effects compared to the thinner one. 6.As the LDR increased, more and more BCR occurred and there was appeared a block action below Z / B=O.5, but over the value, decrement of BCR was shown linear relation, and no effects above one. 7.The coefficient of the inclination was shown of minimum at the three layers of fabrics, but the value of H / B related to the ultimate load was decreased as increment of inclination degree, even though over the value of 4.5 there wasn't expected to the reinforcing effects As a consequence of the effects on load inclination, the degree of inclination of 15 per cent was decreased the bearing capacity of 70 per cent but irnproved the effects of 45 per cent through the insertion of geotextile.

  • PDF

Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade

  • You, Jiangfeng;Liu, Xing;Zhang, Bo;Xie, Zhongkai;Hou, Zhiguang;Yang, Zhenming
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Background: In Changbai Mountains, Panax ginseng (ginseng) was cultivated in a mixture of the humus and albic horizons of albic luvisol in a raised garden with plastic shade. This study aimed to evaluate the impact of ginseng planting on soil characteristics. Methods: The mixed-bed soils were seasonally collected at intervals of 0-5 cm, 5-10 cm, and 10-15 cm for different-aged ginsengs. Soil physico-chemical characteristics were studied using general methods. Aluminum was extracted from the soil solids with $NH_4Cl $(exchangeable Al) and Na-pyrophosphate (organic Al) and was measured with an atomic absorption spectrophotometer. Results: A remarkable decrease in the pH, concentrations of exchangeable calcium, $NH_4^+$, total organic carbon (TOC), and organic Al, as well as a pronounced increase in the bulk density were observed in the different-aged ginseng soils from one spring to the next. The decrease in pH in the ginseng soils was positively correlated with the $NH_4^+$ (r=0.463, p<0.01), exchangeable calcium (r=0.325, p<0.01) and TOC (r= 0.292, p < 0.05) concentrations. The $NO_3^-$ showed remarkable surface accumulation (0-5 cm) in the summer and even more in the autumn but declined considerably the next spring. The exchangeable Al fluctuated from $0.10mg\;g^{-1}$ to $0.50mg\;g^{-1}$ for dry soils, which was positively correlated with the $NO_3^-$ (r=0.401, p < 0.01) and negatively correlated with the TOC (r=-0.329, p < 0.05). The Al saturation varied from 10% to 41% and was higher in the summer and autumn, especially in the 0-5 cmand 5-10 cm layers. Conclusion: Taken together, our study revealed a seasonal shift in soil characteristics in ginseng beds with plastic shade.

Comparison of Rainfall Seepage Characteristics of Gneiss and Granite Weathered Soil (편마암풍화토와 화강암풍화토의 강우 침투특성 비교)

  • Song, Young-Suk;Yoo, Yong-Jae;Kim, Tae-Wan;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.21-28
    • /
    • 2021
  • The factors of landslides depend on rainfall intensity, duration, and the characteristics of the soil slope. The conventional slope stability analysis has been carried out by assuming that the slope is saturated. But, a site slope consisting of unsaturated ground must be imitated and interpreted in order to explain a proper behavior of the slope due to rainfall. In this study, by using two major categories of soils in Korea, such as granite and gneiss weathered soils, landslide model test and numerical analysis have been compared with the difference of seepage and volumetric water content. In general, the permeability of gneiss weathered soil, which contains a lot of fines content, is slower than that of granite weathered soil. As a result, in extreme rainfall, numerical analysis can show results that can penetrate quickly, resulting in saturation or more dangerous collapse.

Studies on the Morphological, Physical and Chemical Properties of the Korean Forest soil in Relation to the Growth of Korean White Pine and Japanese Larch (한국산림토양의 형태학적 및 이화학적성질과 낙엽송, 잣나무의 성장(成長)에 관한 연구(硏究))

  • Chung, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.189-213
    • /
    • 1980
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in accordance with multi-variate analysis. 2. Test species, larch and the Korean white pine, are plantable in extensive areas from mid to north in the temperate zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are not known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth. But, when larch is planted in the Korean white pine site it can be hardly said that the larch growth is good. To understand on such a difference soil factors have been studied so as to see how the soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 larch plots and 259 white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analysis of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/chemical properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of deposit form, soil depth, soil moisture, altitude, relief, soil type, depth of A-horizon, soil consistency content of organic matter soil texture bed rock gravel content aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency bed rock aspect depth of A-horizon soil moisture altitude relief deposit form soil depth soil texture gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of base saturation organic matter CaO C/N ratio, effective $P_2O_5$ PH.exchangeable $K_2O$ T-N MgO C E C Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$ Total Base T-N Na C/N ratio PH CaO base saturation organic matter exchangeable $K_2O$ C E C and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of soil depth deposit form soil moisture PH relief soil type altitude T-N soil consistency effective $P_2O_5$ soil texture depth of A-horizon Total Base exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type soil consistency aspect effective $P_2O_5$ depth of A-horizon exchangeable $K_2O$ soil moisture Total Base altitude soil depth base saturation relief T-N C/N ratio and deposit from. 7. In the multiple regression of forest soil's physical properties larch's correlation coefficient is 0.9272 and for the Korean white pine it is 0.8996. With chemical properties larch has 0.7474 and the Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properties are not less important than the physical properties. In the multiple regression of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for the Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients larch needs deeper soil depth than the Korean white pine and in the deposit form colluvial and creeping soils are demanded by the larch. Adequately moist to too moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief soil moisture PH N altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variation as plantation environments. For larch siting soil depth deposit form relief soil moisture PH soil type N and soil texture are indicators of good growth and for Korean white pine they are soil type soil consistency effective $P_2O_5$ and exchangeable $K_2O$, which is demanded more by the Korean white pine than larch generally. 9. Physical properties of soil has been known as affecting tree growth to greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for larch and the Korean white pine that have been uncertain So far could be clarified.

  • PDF

Analysis on the Relation between the Morphological Physical and Chemical Properties of Forest Soils and the Growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification (수량화(數量化)에 의(依)한 우리나라 삼림토양(森林土壤)의 형태학적(形態学的) 및 이화학적(理化学的) 성질(性質)과 잣나무 및 낙엽송(落葉松)의 생장(生長) 상관분석(相關分析))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.1-26
    • /
    • 1981
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in sccordance with multi-variate analysis. 2. Test species, japanese larch (Larix leptolepis Gord) and the Korean white pine, (pinus koraiensis S et Z.) are plantable in extensive areas from mid to north in the temperate forest zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are little known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth, but, when Japanese larch is planted in Korean white pine site it can be hardly said that the Japanese Larch growth is good. To understand on such a difference soil factors have been studied so as to see how th soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 Japanese larch plots and 259 Korean white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analyses of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the decreasing order of weight deposit form, soil depth, soil moisture, altitude, relief, soil type, depth a A-horizon, soil consistency, content of organic matter, soil texture, bed rock, gravel content, aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency, bed rock, aspect, depth of A-horizon, soil moisture, altitude, relief, deposit form, soil depth, soil texture, gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of base saturation, organic matter, CaO, C/N ratio, effective $P_2O_5$, PH, exchangeable, $K_2O$, T-N, MgO, CEC, Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$, Total Base, T-N, Na, C/N ratio, PH, CaO, base saturation, organic matter, exchangeable $K_2O$, CEC and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of soil depth, deposit form, soil moisture, PH, relief, soil type altitude, T-N, soil consistency, effective $P_2O_5$, soil texture, depth of A-horizon, Total Base, exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type, soil consistency, aspect, effective $P_2O_5$, depth of A-horizon, exchangeable $K_2O$, soil moisture, Total Base, altitude, soil depth, base saturation, relief, T-N, C/N ratio and deposit form. 7. In the multiple correlation of forest soil's physical properties larch's correlation coefficient for Japanese Larch is 0.9272 and for Korean white pine, 0.8996. With chemical properties larch has 0.7474 and Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properities are not less important than the physical properties. In the multiple correlation of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients Japanese larch needs deeper soil depth than Korean white pine and in the deposit form of colluvial and creeping soils are demanded by the larch. Moderately moist to not moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N, soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief, soil moisture, PH, N, altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variations as plantation environments. For the larch siting soil depth, deposit form, relief, soil moisture, pH, soil type, N and soil texture are indicators of good growth and for the Korean white pine they are soil type, soil consistency, effective $P_2O_5$ and exchangeable $K_2O$. In soil nutrients larch has been found out demanding more than the Korean white pine except $K_2O$, which is demanded more by the Korean white pine than Japanese larch generally. 9. Physical properties of soil has been known as affecting tree growth to the greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for the Japanese larch and the Korean white pine that have been uncertain so far could be clarified.

  • PDF

Development of a Numerical Simulator for Methane-hydrate Production (메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.67-75
    • /
    • 2014
  • Methane gas hydrate which is considered energy source for the next generation has an urgent need to develop reliable numerical simulator for coupled THM phenomena in the porous media, to minimize problems arising during the production and optimize production procedures. International collaborations to improve previous numerical codes are in progress, but they still have mismatch in the predicted value and unstable convergence. In this paper, FEM code for fully coupled THM phenomena is developed to analyze methane hydrate dissociation in the porous media. Coupled partial differential equations are derived from four mass balance equations (methane hydrate, soil, water, and hydrate gas), energy balance equation, and force equilibrium equation. Five main variables (displacement, gas saturation, fluid pressure, temperature, and hydrate saturation) are chosen to give higher numerical convergence through trial combinations of variables, and they can analyze the whole region of a phase change in hydrate bearing porous media. The kinetic model is used to predict dissociation of methane hydrate. Developed THM FEM code is applied to the comparative study on a Masuda's laboratory experiment for the hydrate production, and verified for the stability and convergence.

Grain Yield and Seed Quality of Rice Plants as Affected by Water-saving Irrigation (절수관개방법이 벼 수량 및 품질에 미치는 영향)

  • Choi Weon-Young;Park Hong-Kyu;Moon Sang-Hoon;Choi Min-Gyu;Kim Sang-Su;Kim Chung-Kon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.141-144
    • /
    • 2006
  • This experiment investigated seed yield and grain quality of rice plants treated with different irrigation methods (water supply until complete saturation, field capacity, and surface soil crack) compared with a conventional irrigation method (inundation). Each treatment began 20 days after transplanting and ended 35 days after heading. There was an 8, 18 and 18% reduction in irrigation water in the three treatments, respectively. Rice yield with complete saturation treatment was similar to that of conventional irrigation, while those of field capacity and soil crack were less by 7 and 13%. The ratio of filled grain was lower and amylose content was higher in the water-saving irrigation than those from conventional irrigation.