• Title/Summary/Keyword: soil quantity

Search Result 439, Processing Time 0.023 seconds

Measurement of Phosphorus Buffering Power in Various Soils using Desorption Isotherm (탈착 등온식을 이용한 토양 중 인산 완충력 측정)

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • Phosphorus desorption study is essential to understanding P behavior in agricultural and environmental soils because phosphorus is considered as two different aspects, a plant nutrient versus an environmental contaminant. This study was conducted to determine soil P buffering power related to P desorption quantity intensity (Q/I) parameters, $Q_{max}$(an index of P release capacity) and $l_0$(an index of the intensity factor), and to investigate the characteristics of relationship between the P desorption Q/I parameters and the soil properties. Soil samples were prepared with treatments of 0 and $100mg\;P\;kg^{-1}$ applied as $KH_2PO_4$ solution. The P desorption Q/I curves were obtained by a procedure using anion exchange resin beads and described by an empirical equation ($Q=aI^{-1}+bln(I+1)+c$). The P desorption Q/I curves for the high available P (${\g}20mg\;kg^{-1}$ of Olsen P) soils were characteristic concave trends with or without soil P enrichment, whereas for the low available P (${\lt}20mg\;kg^{-1}$ of Olsen P) soils, the anticipated Q/I concave curves could not be obtained without a proper amount of P addition. When the soils were enriched in phosphates, the values of desorbed solid phase labile P and solution P, such as $Q_{max}$ and $I_0$ respectively, were increased, but the ratio of $Q_{max}$ versus $I_0$ was decreased. Thus, the slope of desorption Q/I curve represented as phosphorus buffering power, $|BP_0|$, is decreased. The $|BP_0|$ values of the high available P soils ranged between 48 and $61L\;kg^{-1}$ in the P untreated samples and between 18 and $44L\;kg^{-1}$ in the P enriched samples. Overall $|BP_0|$ values of both low and high available P soils treated with $l00mg\;P\;kg^{-1}$ ranged between 14 and $79L\;kg^{-1}$. The $Q_{max}$, values ranged between 71.4 and $173.1mg\;P\;kg^{-1}$, and the lo values ranged between 0.98 and $3.82mg\;P\;L^{-1}$ in the P enriched soils. The $Q_{max}$ and $I_0$ values that control the P buffering power may be not specifically related to a specific soil property, but those values were complicatedly related to soil pH, clay content, soil organic matter content, and lime. Also, phosphorus release activity, however, markedly depended on the desorbability of the applied P as well as the native labile P.

Korean-Style of No-Tillage Organic Agriculture on Recycled Ridge V. Changes in Pepper Yield, Soil Chemical Properties and Distribution of Animalcule with Split Irrigation and Organic Matter at Plastic Film Greenhouse Soil in Organic Cultivation of No-Tillage Systems (두둑을 재활용한 한국형 무경운 유기 농업 V. 분할 관수와 유기물 처리에 의한 시설 무경운 유기재배 고추의 수량 및 토양 화학성과 미소 곤충의 변화)

  • Yang, Seung-Koo;Kim, Do-Ik;Kim, Hee-Kwon;Yang, Jung-Ko;Han, Yeon-Soo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.329-344
    • /
    • 2017
  • This study was carried out to investigate the hot pepper yield, chemical properties of soil and distribution of animalcule with split irrigation and input of organic matter under no-tillage hot pepper green house condition. After experiment, soil pH maintained range of 5.6~6.2 in whole treatments. Organic matter content of soil was range of $32{\sim}42g{\cdot}kg^{-1}$. Soil salinity (EC) content of soil was range of $1.0{\sim}2.7dS{\cdot}m^{-1}$. Exchangeable cations in soil were range of $0.08{\sim}0.24cmol^+{\cdot}kg^{-1}$ in K, $9.5{\sim}12.8cmol^+{\cdot}kg^{-1}$ in Ca, and $2.7{\sim}3.2cmol^+{\cdot}kg^{-1}$ in Mg. Avaliable phosphorus ($P_2O_4$) content in soil was range of $1,011{\sim}1,137mg{\cdot}kg^{-1}$. Yield of pepper was more decreased in treatment of soybean cake fertilizer than no-treatment of soybean cake fertilizer. Yield of pepper in treatment of soybean cake fertilizer was increased at 33% of standard fertilizer application. Yield of pepper in no-treatment of soybean cake fertilizer was increased at 33% and 66% of standard fertilizer application. Number of fruits was increased range of 12.5~34.9% at half division irrigation compared with whole quantity irrigation. Yield of pepper was increased range of 13.5~34.4% at half division irrigation compared with whole quantity irrigation. Nine index of nature status and 271 Individual were captured in treatment of soybean cake fertilizer. Five index of nature status and 54 Individual were captured in treatment of soybean cake fertilizer. Nature status for environmental change as index organism was 11 points and 5 points, at treatment of soybean cake fertilizer and no-treatment of soybean cake fertilizer, respectively.

Nutrient Dynamics and Water Quantity of Throughfall and Stemflow in Natural Oak Stands in Korea (우리나라 참나무 천연림에 있어서 임내우의 수량변화 및 양분동태)

  • Jin, Hyun-O;Son, Yo-Whan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.61-70
    • /
    • 2007
  • This study was conducted to investigate nutrient dynamics and water quantity of throughfall and stemflow in natural oak stands in Korea. The ratio of the total throughfnll and stemflow to the amount of precipitation varied with locations. It was considered that the ratio was affected not only by the characteristics of tree species but also by regional, weather and other environmental conditions. It was, therefore, necessary to set up a water control system to launch a tending project for natural oak stands. Comparisons of nutrient amount in throughfall among regions reflected regional characteristics. $Ca^{2+},\;Mg^{2+}$ and $K^+$ ions were leached from the canopy and yellow sand accumulation. $Na^+$ and $Cl^-$ were marine-borne. $NO_3^-$ and $SO_4^{2-}$ resulted from dry deposition of air pollutants. Nutrient amount in the stemflow was as low as about 10% of that in the total throughfall and stemflow. The pH of stemflow in natural oak stands in urban areas ranged from 3 to 5. Influx of the acidic stemflow to soil could, in the long term, affect pH in soil solution and nutrient dynamics around root zones.

Review of Policy Direction and Coupled Model Development between Groundwater Recharge Quantity and Climate Change (기후변화 연동 지하수 함양량 산정 모델 개발 및 정책방향 고찰)

  • Lee, Moung-Jin;Lee, Joung-Ho;Jeon, Seong-Woo;Houng, Hyun-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.157-184
    • /
    • 2010
  • Global climate change is destroying the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. The Intergovernmental Panel on Climate Change (IPCC 2007) makes "changes in rainfall pattern due to climate system changes and consequent shortage of available water resource" a high priority as the weakest part among the effects of human environment caused by future climate changes. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes, and "direct" interactions, being indirectly affected through recharge. Therefore, in order to quantify the effects of climate change on groundwater resources, it is necessary to not only predict the main variables of climate change but to also accurately predict the underground rainfall recharge quantity. In this paper, the authors selected a relevant climate change scenario, In this context, the authors selected A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by period and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model for groundwater recharge, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems associated with how the groundwater resource circulation system should be reflected in future policies pertaining to groundwater resources, it may be urgent to recalculate the groundwater recharge quantity and consequent quantity for using via prediction of climate change in Korea in the future and then reflection of the results. The space-time calculation of changes to the groundwater recharge quantity in the study area may serve as a foundation to present additional measures for the improved management of domestic groundwater resources.

  • PDF

Application of Enzymatic Activity and Arsenic Respiratory Gene Quantification to Evaluate the Ecological Functional State of Stabilized Soils Nearby Closed Mines (안정화 처리된 폐광산 토양의 생태기능상태 평가를 위한 효소활성도 및 비소호흡유전자의 적용)

  • Park, Jae Eun;Lee, Byung-Tae;Lee, Sang Woo;Kim, Soon-Oh;Son, Ahjeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.265-276
    • /
    • 2017
  • Heavy metals leaching from closed mines have been causing severe environmental problems in nearby soil ecosystems. Mine reclamation in Korea has been recently implemented based on the heavy metal immobilization (a.k.a., stabilization). Since the immobilization temporarily fixes the heavy metals to the soil matrix, the potential risk of heavy metal leaching still exists. Therefore the appropriate monitoring and the related policies are required to safeguard the soils, where all the cultivations occur. The current monitoring methods are based on either heavy metal concentration or simple toxicity test. Those methods, however, are fragmented and hence it is difficult to evaluate the site in an integrated manner. In this study, as the integrated approach, ecological functional state evaluation with a multivariate statistical tool was employed targeting physiochemical soil properties, heavy metal concentrations, microbial enzymatic activity, and arsenic respiratory reductase gene quantity. Total 60 soil samples obtained from three mines (Pungjeong, Jeomdong, Seosung) were analyzed. As a result, the stabilized layer soil and lower layer soil have shown the similar pattern in Pungjeong mine. In contrast, Jeomdong and Seosung mine have shown the similarity between the stabilized layer soil and the cover layer soil, indicating the possible contamination of the cover layer soil.

A Study on the Tolerance to the Soil Properties and Water Contents of Vitex rotundifolia Seedlings for Extension of Rehabilitation Plant (순비기나무의 녹화소재 이용성 확대를 위한 토양 및 토양수분 적응성에 관한 연구)

  • Park Chong-Min;Kim Do-Gyun
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.3
    • /
    • pp.316-325
    • /
    • 2004
  • This study was carried out to survey the usability of Vitex rotundifolia as an afforestation and landscaping plant on destroyed slopes, sandyhills of sea boards, and places in need of landscaping. The growth characteristics of seedlings and rooted cuttings of Vitex rotundifolia in soils of varying properties and water content ere studied. In three test soils, with a water content of 5% each, the survival rate was more than 70ole for seedlings and more than 40% for rooted cuttings. This demonstrates that Vitex rotundifolia is a very strongly xeric tree species. The length of stem, the diameter of root stock, leaves, and the length of root increased in all the three types of soil as the quantity of soil water increased. The difference of the growth in response to the water content of the soil was most pronounced in the length of the stem. The growth of seedlings was most notable in the weathered granitic soil. The sea sand and the red silt loam came second and third, respectively. However, there was no major difference in the three test soils. Thus, Vitex rotundifolia appears well-suited to several soil properties and soil water quantities, which makes it very useful as an afforestation and landscaping plant in various sites.

A Review on the Current Methods for Extracting DNA from Soil and Sediment Environmental Samples (토양 및 퇴적토 환경 시료로부터 DNA 추출하는 방법에 대한 고찰)

  • Yoo, Keun-Je;Lee, Jae-Jin;Park, Joon-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.57-67
    • /
    • 2009
  • In soil and sediment environment, microorganisms play major roles in biochemical cycles of ecological significant elements. Because of its ecological significance, microbial diversity and community structure information are useful as indexes for assessing the quality of subsurface ecological environment and bioremediation. To achieve more accurate assessment, it is requested to gain sufficient yield and purity of DNA extracted from various soil and sediment samples. Although there have been a large number of basic researches regarding soil and sediment DNA extraction methods, little guideline information is given in literature when choosing optimal DNA extraction methods for various purposes such as environmental ecology impact assessment and bioremediation capability evaluation. In this study, we performed a thorough literature review to compare the characteristics of the current DNA extraction methods from soil and sediment samples, and discussed about considerations when selecting and applying DNA extraction methods for environmental impact assessment and bioremediation capability evaluation. This review suggested that one approach is not enough to gain the suitable quantity and yield of DNA for assessing microbial diversity, community structure and population dynamics, and that a careful attention has to be paid for selecting an optimal method for individual environmental purpose.

Assessment of Dredged Soils and Sediments Properties in the Lower Reach of Nakdong River and Coastal Areas of Busan for Beneficial Uses (낙동강 하류 및 부산연안지역의 준설토와 퇴적토 활용을 위한 특성 평가)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.57-66
    • /
    • 2013
  • Although the quantity of dredged soils has increased owing to recent new harbor construction, sea course management, polluted sediment dredging, and four-river project, the reuse or recycling of those dredged soils has not done properly in Korea. To develop measures to utilize them in various ways for reuse or recycling, the biophysicochemical properties of dredged soils and sediment were assessed in this study. Samples were classified according to their sources-river and sea-by location, and as dredged soil and sediment depending on storage time. The results showed that dredged materials from the sea have high clay content and can be used for making bricks, tiles, and lightweight backfill materials, while dredged materials from the river have high sand content and can be used in sand aggregates. Separation procedures, depending on the intended application, should be carried out because all dredged materials are poorly sorted. All dredged soils and sediments have high salinity, and hence, salts should be removed before use for cultivation. Since dredged materials from the sea have adequate concentrations of nutrients, except phosphate, they can be used for creating and restoring coastal habitats without carrying out any additional removal processes. The high overall microbial activities in dredged materials from the river suggested that active degradation of organic matter, circulation of nutrients, and provision of nutrients may occur if these dredged materials are used for cultivation purpose.

Paddy Rice Culture Experiment Using Treated Sewage Effluent From Constructed Wetland (인공습지 오수처리수를 이용한 벼재배 실험)

  • 윤춘경;함종화;우선호;김민희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.94-104
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the feasibility of the constructed wetland system for sewage and the effect of treated sewage irrigation on the paddy rice culture and its soil characteristics. The constructed wetland performed well, in that effluent concentrations of pollutants were significantly lower than concentrations of the influent. Median removal efficiencies of BOD$_{5}$ was about 78% and slightly lower during winter. Removal efficiencies form TN and TP were approximately 48 and 21%, respectively, and relatively less effective than that of BOD$_{5}$. Irrigation of treated sewage to paddy rice culture did not affect adversely in both growth and yield of rice. Instead, plots of treated sewage irrigation showed up to 50% more yield in average than the control plot. It implies that treated sewage irrigation might be beneficial to rice culture rather than detrimental as long as it is treated adequately and used properly. Soil was sampled and analyzed before transplanting and after harvesting. pH was slightly increased due to irrigation water, but it may not be concerned as long as the treated sewage is within the normal range. EC was increased in first year but decreased in second year, therefore salts accumulation in the soil could be less concerned. OM and CES was slightly increased, which might be beneficial on growing plants. TN did not show apparent pattern. Available phosphorus was decreased after rice culture, but the quantity of phosphorus(TP-available phosphorus) was rather increased which implies that excessive phosphorus supply may result in phosphorus accumulation in the soil. Overall, the constructed wetland was thought to be an effective sewage treatment alternative, and treated sewage could be reused as a supplemental source of irrigation water for paddy rice culture without causing adverse effect as long as it is treated adequately and used properly. For full-scale application, further investigation should be followed on environmental risk assessment, tolerable water quality, and fraction of supplemental irrigation.ion.

  • PDF

Studies of Mulberry Seedling preparation by Cattage Method. First Report. Studies of Mulberry Seedling Root preparation by Graving young Branches in Soil (재육채묘법에 관한 시험 제 1보 원묘의 생산법에 관한 시험)

  • 박병희;김문협;김관극;유근섭;조철호
    • Journal of Sericultural and Entomological Science
    • /
    • v.2
    • /
    • pp.63-71
    • /
    • 1962
  • This work was to develope a more simple producing method of mulberry seedling with lower cost than the normal grafting method and the conclusions were found as; 1. There was no difference for the production of the seedling root when the young mulberry branch was graved in soil at the time it grown as 60∼80cm height. 2. It was found that the best result was obtained in case of 15 to 20 young branches of a mulberry shoot were graved instead of whole of them. 3. The seedling root quality of the clay soil graved was found better than the sand soil used, but root producing quantity was found as the same. 4. The fertilizing at the time of the young branch graving was not effective and also the continual fertilizing seemed not to be effective. 5. The seedlings root production was found that Kairyo Nezumigaeshi was best and Ichihei, Suwon Daeyop, Shimano-Uchi, Suwon No.3 and Suwon No.4 were followed of it. But Rosoh was found as poor. Morus alba L. was found as a better Species than Morus Lhou(Ser) Koidz and Morus bombycis Koidz for the production of the seedling root and its quality.

  • PDF