• Title/Summary/Keyword: soil processes

Search Result 667, Processing Time 0.024 seconds

A Study on the Granulometry and Chemical Composition of Psudo-Gleized Soil in Jeongdongjin Area (정동진 의사글레이층의 입도와 화학 조성에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.27-45
    • /
    • 2017
  • At the upper part of terrace deposits at Jeongdongjin area, there is a structure in which reddish brown and grayish white layers laying horizontally. Previous studies have reported the existence of these structures within the deposits and suggested the theoretical background related to the formation process. However, the analysis of physical properties and chemical composition such as particle size, classification, etc. of the materials constituting the reddish brown and grayish white layers is scarcely done. In this study, the physico - chemical properties of gray - white and reddish brown beds are investigated. The mean grain size of the particles was less than $4{\varphi}$ in both layers and the reddish brown layer was more coarse. The results shows that the sorting of the grayish white layer is better. The chemical composition of both layers shows that the average concentration of $SiO_2$, $Al_2O_3$ and $K_2O$ of the grayish white layer was higher than those of the reddish brown layer. The concentration of $Fe_2O_3$ of reddish brown lyaer was 3 times higher than those of the grayish white layer. The degree of chemical weathering (CIA) is 90 or so in both the reddish brown and grayish white layers, indicating a significant level of chemical weathering. In conclusion, reddish brown layers had been formed by the processes related to the migration of iron and the migration of water that induced aggregation after the formation of sediments (psudo-gleization). In this study area, a vertical layer of grayish white which cuts off horizontal reddish brown and grayish white color was found. The vertical layer or wedge similar to a ice-wedge or columnar structure that in a cold environment, and there is a difference in shape and size. The vertical layer appears to have occurred three or more cycles. The vertical layers begin to form at a certain height within the outcrop and descend downwards, which of course is difficult to see as directing certain times.

Effect of GA3 and BA on Plant Growth of Ranunculus Cultivars

  • Kwak, Ho-Geun;Lee, Young Ran;Choi, Youn Jung;Lee, Su Young;Kang, Yun-Im
    • FLOWER RESEARCH JOURNAL
    • /
    • v.26 no.4
    • /
    • pp.179-186
    • /
    • 2018
  • Ranunculus asiaticus characterizes colorful and attractive flower shapes that are related with the ornamental value of bulbous plants. Improving ornamental value of bulbous flowers has been the general goal of floricultural market. Gibberellic acid ($GA_3$) and benzyladenine (BA) play an important role in growth and developmental processes in floriculture. Combinational treatments of these two hormones have been used in floriculture to improve flower quality. We assessed the effects of combined $GA_3$ and BA, as well as the individual effects of each hormone, on growth characteristics using soil drench application to eight R. asiaticus cultivars, 'Giallo Millepetali', 'Bianco Millepetali', 'Arancio Millepetali', 'Rosa SC', 'Arancio Pratolino', 'Giallo Pratolino', 'Bianco Pratolino', and 'Rosa Ch Pratolino'. $GA_3$ treatments increased plant height and first flower size of R. asiaticus cultivars. Moreover, about 5 to 9 days to flowering were averagely shortened by $GA_3$ treatments compared to controls. On the other hand, the opposites, including first flower size and days to flowering, were observed for cultivars treated with BA, compared with controls. Treatments of $GA_3$ + BA generally affected growth traits, such as plant height, flower size, and the timing of flowering on some R. asiaticus cultivars. In particular, about 5 to 6 days to flowering were reduced on average by Treatments of $GA_3$ + BA. Our results showed positive growth effects, including plant height, days to flowering, first flower height, number of flowers from the application of individual and combined hormones to R. asiaticus cultivars and demonstrate a role for these hormones in future bulbous floriculture.

Dissolved Organic Matter (DOM) Leaching from Microplastics under UV-Irradiation and Its Fluorescence P roperties: Comparison with Natural P articles (UV 광풍화에 의한 미세플라스틱 기원 유기물 용출과 형광 특성: 자연유래 유기성 입자와의 비교)

  • Choi, Na Eun;Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.72-81
    • /
    • 2022
  • Numerous studies have investigated the occurrence and fate of microplastics in the environment; however, only limited effort has been devoted to exploring the characteristics of dissolved organic matter (DOM) leached from microplastics. In microplastic (MP)-contaminated environment, MPs are typically mixed with naturally-occurring particles, which interferes with their detection in the environment. Thus, it is necessary to distinguish between the DOM leached from MPs and those leached from natural particles and also to characterize their properties. This study investigated DOM leaching behavior from MPs (polystyrene: PS, polyvinylchloride: PVC) and natural particulates (forest soil: FS, litter leaves: LL) under light, which is considered one of the main weathering processes that affect MPs in the environment. The leached DOM concentrations and fluorescence characteristics were compared under dark versus light conditions. Regardless of the origins, UV light promoted DOM release from all the particulates. More DOM was released from natural particles than from MPs under both conditions. However, the effect of promoting DOM release by UV was more pronounced for MPs than for natural particles. It was observed from fluorescence spectra that the intensity of the humic-like region was substantially reduced when MP-derived DOM was exposed to UV light, whereas the change of intensity was very little for natural particles. Under light conditions, the ratio of protein-like to humic-like fluorescence of MP-derived DOM was higher than that of DOM from natural particles. This study implies that a substantial amount of DOM could be leached from MPs even in MP-polluted environment under UV irradiation. Protein/humic fluorescence ratio could be utilized as a fast probing indicator to separate the two sources of particles under light.

Discovery of Chitin Deacetylase Inhibitors through Structure-Based Virtual Screening and Biological Assays

  • Liu, Yaodong;Ahmed, Sibtain;Fang, Yaowei;Chen, Meng;An, Jia;Yang, Guang;Hou, Xiaoyue;Lu, Jing;Ye, Qinwen;Zhu, Rongjun;Liu, Qitong;Liu, Shu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.504-513
    • /
    • 2022
  • Chitin deacetylase (CDA) inhibitors were developed as novel antifungal agents because CDA participates in critical fungal physiological and metabolic processes and increases virulence in soil-borne fungal pathogens. However, few CDA inhibitors have been reported. In this study, 150 candidate CDA inhibitors were selected from the commercial Chemdiv compound library through structure-based virtual screening. The top-ranked 25 compounds were further evaluated for biological activity. The compound J075-4187 had an IC50 of 4.24 ± 0.16 µM for AnCDA. Molecular docking calculations predicted that compound J075-4187 binds to the amino acid residues, including active sites (H101, D48). Furthermore, compound J075-4187 inhibited food spoilage fungi and plant pathogenic fungi, with minimum inhibitory concentration (MIC) at 260 ㎍/ml and minimum fungicidal concentration (MFC) at 520 ㎍/ml. Therefore, compound J075-4187 is a good candidate for use in developing antifungal agents for fungi control.

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

A Study on Priority Determination of Seismic Reinforcement of Apartment Houses Considering Earthquake Risk Factors (지진의 위험요인을 고려한 공동주택의 내진보강 우선순위 결정에 관한 연구)

  • Han, Bum-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.405-416
    • /
    • 2023
  • Recent seismic activities in countries like China and Turkey have underscored the widespread and severe damages that earthquakes can inflict globally. Being situated in a seismically active zone, South Korea can no longer regard itself as immune to earthquake hazards, necessitating the urgent adoption of proactive measures against such threats. The government has been proactive in evaluating, formulating processes, and methods for the seismic retrofitting of public buildings lacking in earthquake resistance. However, enforcement mechanisms for privately-owned apartment complexes are absent, and in the face of insufficient previous research and guidelines, preemptive measures for public safety remain alarmingly inadequate. With over 48% of residential structures in Korea aged over 30 years, and apartment complexes constituting more than 80% of these, the gravity of the situation is undeniable. This study deduces key factors for seismic retrofitting of apartment buildings like earthquake zones, soil type, building significance, aging degree, vulnerability, etc., based on building seismic design codes. It further proposes an algorithm for a more succinct and efficient determination of the priority of seismic reinforcements for apartment buildings.

Development and Performance Analysis of Self-Propelled Crawler and Gathering Type Potato Harvester (크롤러 타입 자주식 수집형 감자 수확기 개발 및 성능분석)

  • Won-Kyung Kim;Sang Hee Lee;Deok Gyu Choi;Seok Ho Park;Youn Koo Kang;Seok Pyo Moon;Chang Uk Cheon;Young Joo Kim;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.23-29
    • /
    • 2024
  • Potatoes are one of the world's four major crops, and domestic consumption is currently increasing in Korea. However, the mechanization rate of potatoes is very low, and especially, harvesting is the most labor-intensive task in potato production. In Korea, potato-collecting work depends on manpower, so it is necessary to develop a gathering-type harvester that can be used for processes from digging to harvesting. Therefore, in this study, a self-propelled-type potato harvester was developed, and its performance was analyzed to mechanize harvesting. The potato harvester was developed to have a crawler-type driving part with a 60 hp diesel engine and consisted of a digging part that digs potatoes from the ground, a vertical transporting part that transfers the dug potatoes to the height of the collection bag, a separating part that separates debris, such as stones and soil, and a collecting part that loads the collection box. A field test of the potato harvester was conducted, and performance was evaluated by the damage, loss, and debris mixing proportions, which were 2.5%, 2.8%, and 2.6%, respectively. The working capacity was 1.2 h/10 a. The economic analysis results showed that the cost of harvesting work could be reduced by 12.7% compared to manual harvesting.

Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes (펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리)

  • Bae, Jae-Sang;Kim, Jong-Hyang;Choi, Jung-Hye;Ekpeghere, Kalu I.;Kim, Soo-Gon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.356-363
    • /
    • 2011
  • The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes (안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구)

  • Park, Kwang-Su;Kim, Hyuk;Yu, Suk-Min;Noh, Seam;Park, Yu-Mi;Seok, Kwang-Seol;Kim, Min-Seob;Yoon, Suk Hee;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.