• Title/Summary/Keyword: soil pressure

Search Result 1,649, Processing Time 0.034 seconds

Prediction of Adfreeze Bond Strength Using Artificial Neural Network (인공신경망을 활용한 동착강도 예측)

  • Ko, Sung-Gyu;Shin, Hyu-Soung;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.71-81
    • /
    • 2011
  • Adfreeze bond strength is a primary design parameter, which determines bearing capacity of pile foundation in frozen ground. It is reported that adfreeze bond strength is influenced by various affecting factors like freezing temperature, confining pressure, characteristics of pile surface, soil type, etc. However, several limited researches have been performed to obtain adfreeze bond strength, for past studies considered only few affecting factors such as freezing temperature and type of pile structures. Therefore, there exists a limitation of estimating the design parameter of pile foundation with various factors in frozen ground. In this study, artificial neural network algorithm was involved to predict adfreeze bond strength with various affecting factors. From past five studies, 137 data for various experimental conditions were collected. It was divided by 100 training data and 37 testing data in random manner. Based on the analysis result, it was found that it is necessary to consider various affecting factors for the prediction of adfreeze bond strength and the prediction with artificial neural network algorithm provides enough reliability. In addition, the result of parametric study showed that temperature and pile type are primary affecting factors for adfreeze bond strength. And it was also shown that vertical stress influences only certain temperature zone, and various soil types and loading speeds might cause the change of evolution trend for adfreeze bond strength.

Resear cher & Coordinator, Canal Reseach & Development, japan (농업수리시설과 소수로굴착용 Trencher V형의 개발에 대하여)

  • 영목청
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.28-36
    • /
    • 1979
  • One of most important problems in the Monsoon Asia today is the production of rice paddy to meet the needs of the ever increasing population. Diversemeans are being employed to meet this demand, both by increasing productivity of existing farm land and by bringing further areas into cultivation. The primary step in either field is to ensure that there is sufficient moisture in the soil to suit the paddy, and at the same this means that excess moisture has to be drained off the land, while in others irrigat ion has to be employed to bring sufficient water to an area. In view of the fact that the project comprises a huge amount of earthwork, it can be carried out by extensive use of construction machinery in order to shorten the period. As farm ditch has a comparatively small section with shallow cutting depth, inaddition, there is lack of access road in the field, the excavation equipment with bulldozer or tracter-shovel (backhoe) type are not applicable because there are mostly adapted for the excavation of deep and wide section. Mini-backhoe with its bucket width not larger than 0. 3m, and width of blade not larger than 1. 00m seems to be more adaptable. About 80% of excavation of ditch section will be done by the machinery while the other 20% of excavation together with the finishing of the section are supposed to be done by man-power. The embankment of ditch section can be compacted by the crawler of backhoe when it is moving along the ditch for excavation. However, Lowland paddy field in the Monsoon Asia are made particulary in rain season, therefore, heavy machinery is not easy excavation for ditch. It is very important to know exact ground support power of the working site and select machines with corresponding ground pressure. Ground support power is variable subject to quality and water content of soil and therefore selection of machines should be made duly considering ground condition of the site at the time of construction works. Farm ditches dug and compacted by mannual labar are of poor quality and subject to destruction after one or two years of operation. On the other hand, excavation and compaction by bulldozer is not practical for ditches. Backboe is suitable for slope land, but this is required cycle time of bucket excavation and dumped out. If a small-scale farm ditch trencher adaptable to lowland paddy field is invented, such a machine could greatly accelerate the massive construction work envisaged in many countries and thus significantly speed up the most difficult part of irrigation development and management in Monsoon Asia.

  • PDF

A Study for Remediation of Railroad Ballast Gravel Using Dry Washing Method (건식세척기술을 이용한 철도 도상자갈 정화 연구)

  • Bae, Jiyong;Jeong, Taeyang;Kim, Jae Hun;Lee, Sang Tak;Joo, Hyung Soo;Oh, Seung-Taek;Cho, Youngmin;Park, Duckshin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.365-373
    • /
    • 2017
  • This study proposes a newly developed dry washing method for removing pollutants such as total petroleum hydrocarbon (TPH) and oxidized iron from the surface of ballast gravel. A batch-type dry washing method showed a good performance in a previous study. In this study, a continuous-type dry washing system, instead of a batch-type system, was prepared to improve the efficiency of the system. A drier and a separator were also applied to this system as pre-treatment process, and the performance of this system was evaluated. In this experiment, blasting media was blasted on the polluted gravels through 12 nozzles by a pressure of $5-6kg/cm^2$ for 20-30 mins to remove TPH and oxidized iron. It was found to be possible to remove 80-90% of TPH and oxidized iron by using this system. Several ways to improve the performance were suggested in this study.

Changes of carbon-13 Isotope of Dissolved Inorganic Carbon Within Low-pH CO2-rich Water during CO2 Degassing (pH가 낮은 탄산수의 CO2 탈기에 따른 용존탄소동위원소 변화)

  • Chae, Gitak;Yu, Soonyoung;Kim, Chan Yeong;Park, Jinyoung;Bang, Haeun;Lee, Inhye;Koh, Dong-Chan;Shinn, Young Jae;Oh, Jinman
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.24-35
    • /
    • 2019
  • It is known that ${\delta}^{13}C_{DIC}$ (carbon-13 isotope of dissolved inorganic carbonate (DIC) ions) of water increases when dissolved $CO_2$ degases. However, ${\delta}^{13}C_{DIC}$ could decrease when the pH of water is lower than 5.5 at the early stage of degassing. Laboratory experiments were performed to observe the changes of ${\delta}^{13}C_{DIC}$ as $CO_2$ degassed from three different artificial $CO_2$-rich waters (ACWs) in which the initial pH was 4.9, 5.4, and 6.4, respectively. The pH, alkalinity and ${\delta}^{13}C_{DIC}$ were measured until 240 hours after degassing began and those data were compared with kinetic isotope fractionation calculations. Furthermore, same experiment was conducted with the natural $CO_2$-rich water (pH 4.9) from Daepyeong, Sejong City. As a result of experiments, we could observe the decrease of DIC and increase of pH as the degassing progressed. ACW with an initial pH of 6.4, ${\delta}^{13}C_{DIC}$ kept increasing but, in cases where the initial pH was lower than 5.5, ${\delta}^{13}C_{DIC}$ decreased until 6 hours. After 6 hours ${\delta}^{13}C_{DIC}$ increased within all cases because the $CO_2$ degassing caused pH increase and subsequently the ratio of $HCO_3{^-}$ in solution. In the early stage of $CO_2$ degassing, the laboratory measurements were well matched with the calculations, but after about 48 hours, the experiment results were deviated from the calculations, probably due to the equilibrium interaction with the atmosphere and precipitation of carbonates. The result of this study may be not applicable to all natural environments because the pressure and $CO_2$ concentration in headspace of reaction vessels was not maintained constant as well as the temperature. Nevertheless, this study provides fundamental knowledge on the ${\delta}^{13}C_{DIC}$ evolution during $CO_2$ degassing, and therefore it can be utilized in the studies about carbonated water with low pH and the monitoring of geologic carbon sequestration.

A Review on Alkalinity Analysis Methods Suitable for Korean Groundwater (우리나라 지하수에 적합한 알칼리도 분석법에 대한 고찰)

  • Kim, Kangjoo;Hamm, Se-Yeong;Kim, Rak-Hyeon;Kim, Hyunkoo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.509-520
    • /
    • 2018
  • Alkalinity is one of the basic variables, which determine geochemical characteristics of natural waters and participate in processes changing concentrations of various contaminants either directly or indirectly. However, not a few laboratories and researchers of Korea still use alkalinity-measurement methods not appropriate for groundwaters, and which becomes one of the major reasons for the poor ion balance errors of the geochemical analysis. This study was performed to review alkalinity-measurement methods, to discuss their advantages and disadvantages, and, thus, to help researchers and analytical specialists in analyzing alkalinity of groundwaters. The pH-titration-curve-inflection-point (PTC-IP) methods, which finds the alkalinity end point from the inflection point of the pH titration curve are revealed to be most accurate. Gran titration technique among them are likely to be most appropriate for accurate estimation of titrant volume to the end point. In contrast, other titration methods such as pH indicator method and pre-selected pH method, which are still commonly being used, are likely to cause erroneous results especially for groundwaters of low ionic strength and alkalinity.

Environmental Characteristics and Floristic Study of Endangered Pedicularis hallaisanensis Habitats (멸종위기야생식물II급 한라송이풀 자생지의 환경특성 및 식물상)

  • Kim, Lim-Kyu;Choi, Sung-Dae;Choo, Gab-Chul;Hwang, Bu-Yeong;Gang, Geun-Hye;So, Soon-ku;Park, Eun-Hee
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.163-173
    • /
    • 2018
  • This study was carried out to propose the baseline data for in situ conservation by analyzing environmental and growth characteristics in Pedicularis hallaisanenesis habitats. P. hallaisanensis habitats, according to investigations, were located on the slope of southwest at an elevation of 1,400 m in Mt. Gayasan and on the slope of southeast at an elevation of 1,500 m in Mt. Hallasan. Pedicularishallaisanensis habitats. Also, habitats were found at the grassland with no upper vegetation. In the study sites, soil pH and soil organic matter were 4.9-6.5 and 4.4-8.1%, respectively. A total of 55 vascular plants taxa were identified in ten quadrats in two habitats, of which 25 were inhabited in Mt. Gayasan and 37 in Mt. Hallasan. Current status of P. hallaisanensis habitats were very vulnerable with the pressure of the vegetation constantly threatening the species' survival. Thus, concrete conservation plans including diverse factors as light intensity, temperature and genetic analysis to protect natural habitats should be set up as soon as possible.

A Study on the Effect of Collector Well on the Landcreep Slope (땅밀림 비탈면내 집수정 설치 효과 연구)

  • Jeon, Byeong Chu;Lee, Su Gon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.123-136
    • /
    • 2019
  • This study examines the effect of collector well installed to reduce groundwater level in the regions with the occurrence of landcreep, a soil mass movement triggered by instability on slopes. Slopes are prone to failure as a result of instability caused by its internal, topographic and geological properties as well as due to external factors such as rainfall and earthquake. In Korea during the rain season, rainfall infiltration affects the groundwater level in soil, building up porewater pressure and load, and finally drives slopes to collapse. Slope failure caused by rainfall infiltration has been leading to a drastic forest degradation. The studied slope is located adjacent to a valley, its terrain corresponds to piedmont gentle slope, while the upper part of the failure surface is steep. After reinforcing the terrain where landcreep had occurred and installing collector well on the slope, we measured the changes in the groundwater level. In order to analyze the relationship between the well and the slope, we calculated the ratio of groundwater level to rainfall before and after the installation of the collector well. As a result, it is confirmed that the ratio increases after the installation of the well, which in turn reduces the groundwater level. Analysis of the change in groundwater level after 3, 7, 15 days antecedent rainfall showed that the higher the overall groundwater level, the less the value ($r_p$) of groundwater level-rainfall ratio is, while the value becomes relatively greater when the groundwater level is low. In particular, if a slope has a large catchment basin as is in the case of the studied site, antecedent rainfall affects groundwater level in the order of 3 < 7 < 15 days.

On-site Conservation Treatment of the Beaker-shaped Pottery from Yori, Hyangnam, Hwaseong (화성 향남 요리 출토 심발형 토기 수습과 보존처리)

  • Kwon, Ohyoung;Ham, Chulhee;Lee, Sunmyoung
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.494-504
    • /
    • 2020
  • Ten historic sites (denoted as A- J in this study) of a tomb were found during the construction of the east-west expressway in District 2 of Hyangnam, Hwaseong, which is implemented by the Gyeonggi-do headquarters of the Korea Land & Housing Corporation. Thetombswere first detected at siteH, and further investigations revealed various tombs from the Three Kingdoms period; artifacts such as gilt-bronze shoes and caps were excavated from wooden coffins in the tombs. The pottery examined in this study was the only pottery artifact excavated from the site. Its raw clay was soft and loose, reddish brown, and had quartz and feldspar particles of < 1 mm, which appeared to have been added as reinforcing agents. The firing temperature of the pottery was estimated to be under 800-870 ℃ as the mica remains and tridimite, which is the phase transition mineral of quartz, was not produced; a slight endothermic peak was also detected because of the hydration of sericite at 800 ℃. The condition of the artifact was severely weakened because of various factors, such as soil pressure from the stratum formed over the site and repeated freezing and thawing. The artifact could not be collected alone, and thus, surrounding soil that had attached to the artifact was also collected; the artifact was transported to the laboratory and conservation treatment was conducted in a safe and systematic manner.

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

Permanent Deformations of Piles in Sand Under Cyclic Lateral Loads (모래지반에서 반복수평하중을 받는 말뚝의 영구변형)

  • Paik, Kyu-Ho;Park, Won-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.63-73
    • /
    • 2010
  • Monopiles, used as one foundation option for offshore wind turbines, are usually subjected to great cyclic lateral loads due to wind and wave. In this study, model pile load tests were performed using calibration chamber and three model piles with different pile lengths in order to investigate the behavior of laterally cyclic loaded piles driven into sand. Model test results show that the first loading cycle generates a bigger displacement than the following ones, and the permanent displacement of piles by one loading cycle decreases with increasing the number of cycles. 1-way cyclic loading causes the permanent displacement in the same direction as cyclic loading, whereas 2-way cyclic loading causes the permanent displacement in the reverse direction of initial loading. It is also observed that the permanent displacement of piles due to cyclic lateral loads increases with decreasing relative density of soil and with increasing the magnitude of cyclic loads. However, it is insensitive to the earth pressure ratio of soil and embedded pile length. In addition, based on the model pile load test results, equations for estimation of the permanent lateral displacement and rotation angle of piles due to 1-way cyclic lateral loads are proposed.