• Title/Summary/Keyword: soil permeability

Search Result 678, Processing Time 0.029 seconds

A Study on the Measurement of Gas Discharge from the Gas Vent of Sanitary Landfill(1)- analysis for minimizing the measurement error of flow meter - (쓰레기 매립지 가스포집관에서 유출가스 계측에 관한 연구(1) -유량계 계측오차의 최소화를 위한 해석 -)

  • 이해승;이찬기
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.83-92
    • /
    • 1998
  • This study presents a relationship between gas quantity and measurement resistance using the bubble meter, the water head indicator and the rotor meter from the gas vent sanitary landfill. From the one-dimensional analyses and experiments, the below results have been obtained. The gas volume sourcing from the gas vent depends on the permeability of final cover soil, its cover depth and distance between the gas vents. The total gas volume producing in the interested domain may be accurately measured by the bubble meter, the water head indicator and the rotor meter if the clay is used for the final cover soil. The required times approaching to the steady-state are different with respect to the flow meters, one day is for the bubble meter and the water head indicator and one hour for the rotor meter.

  • PDF

Proper Light Intensity, Potting Media and Fertilization Level for Potted Hepatica asiatica Nakai (노루귀의 분화재배를 위한 적정 광도, 분용토 및 시비수준)

  • Jeong, Kyeong Jin;Jeon, Hyeon Sik;Chon, Young Shin;Yun, Jae Gill
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • This study was conducted to select proper light intensity, pot media, and fertilization level for potted Hepatica asiatica Nakai native to Korea. The plants were grown under various light intensities (shading rate, 52, 82, 90, 97%) imposed by shading net. Plants grown with 52% shading showed a low survival rate (65%). Survival rate increased as shading increased, with over 80% survival in shading above 90%. Growth indexes such as fresh weight and leaf number did not show any significant difference between shading treatments. Plants grown in a soil mixture of decomposed granite:fertilizer-amended media:Kanumatsuchi (60:10:30, v/v/v) or river sand:fertilizer-amended media:bark (50:20:30) showed over 85% survival. However, plants grown in a soil mixture of river sand:fertilizer-amended media:Kanumatsuchi (50:30:20) or upland:river sand (40:60) showed very low survival, below 60%. Leaf number and plant height were the highest in a soil mixture of decomposed granite:fertilizer-amended media:Kanumatsuchi (60:10:30) as well. To select a proper fertilization level for H. asiatica, hyponex solution diluted 1,000- or 2,000-fold were applied weekly or biweekly. The survival rate was lowest at weekly application with 1,000-fold diluted solution, and no significant difference was observed between other treatments. In conclusion, H. asiatica exhibits preferences for very low light intensity and soil with air permeability, and is adaptable to a broad range of fertilization levels.

Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test (반복삼축압축시험을 이용한 국내 모래지반의 액상화 거동 특성 비교)

  • Seo, Hyeok;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.493-506
    • /
    • 2021
  • Liquefaction refers to a phenomenon in which excessive pore water pressure occurs when a dynamic load such as an earthquake rapidly acts on a loose sandy soil saturated with soil, and the ground loses effective stress and becomes liquefied. The indoor repeated test for liquefaction evaluation can be confirmed through the repeated triaxial compression test and the repeated shear test. In this regard, this study tried to confirm the liquefaction resistance strength according to the relative density and particle size distribution of sand using the repeated triaxial compression test. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the soil classification, and the liquefaction resistance strength according to the particle size distribution of the sand was confirmed that the liquefaction resistance strength of the SP sample close to SW was significantly higher. In addition, as a result of analyzing 30% of fine powder compared to 0% of fine powder, as the relative density increased to 40~70%, the liquefaction resistance strength decreased by 5~20%, and the domestic weathered soil ground had a fine liquefaction resistance strength compared to Jumunjin standard sand. When the minute was 10%, it was measured to be 30% or more, and when the fine particle was 30%, it was measured to be less than 50%.

Comparison of 1-g and Centrifuge Model Tests for Similitude Laws (상사법칙 검증을 위한 1-g 모형실험과 원심모형실험의 비교 연구)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo;Ko Hon-Yim
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.59-67
    • /
    • 2006
  • The centrifuge and 1-g shaking table tests were performed simultaneously to compare the dynamic behaviors of loose sands of the same geotechnical properties. The prototype soils were 10 m thick liquefiable loose sands. The geometric scaling factors were 20 for 1-g and 40 for centrifuge tests. The excess pore pressure, surface settlement, and acceleration in the soil were measured at the same locations in the 1-g and centrifuge tests. The total excess pore pressure from development to dissipation was measured. In the centrifuge test, viscous fluid was used as the pore water to eliminate the time scaling difference between dynamic time and dissipation time. In the 1-g tests, the steady state concept was applied to determine the unit weight of the model soil, and two different time scaling factors were applied for the dynamic time and the dissipation time. It is concluded that the 1-g tests can simulate the excess pore pressure of the prototype soil if the permeability of the model soil is small enough to prevent dissipation of excess pore pressure during shaking and the dissipation time scaling factor is properly determined.

Soft Ground Improvement using Electrokinetic Geosynthetics (복합동전기토목섬유를 이용한 연약지반개량)

  • Lee, Myung-Ho;Han, Jung-Geun;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.25-30
    • /
    • 2007
  • The major reason to employ electrokinetic geosynthetics is to take advantage of its ability to densify very low permeability materials in shorter time periods than ordinary seepage consolidation. A number of laboratory scale experiments was carried out with acrylic column using natural clayey soil. The testing results indicate that (1) the electrically induced settlement was faster than the gravitational one, (2) the higher the voltage, the faster the dewatering but the less final settlement, and (3) the pH extended as low as 3 in the anode section and as high as 11 near the cathode.

  • PDF

A study on the improvements of geotechnical properties of in-situ soils by grouting

  • Chang, Muhsiung;Mao, Tze-wen;Huang, Ren-chung
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.527-546
    • /
    • 2016
  • This paper discusses improvements of compressibility, permeability, static and liquefaction strengths of in-situ soils by grouting. Both field testing and laboratory evaluation of the on-site samples were conducted. The improvement of soils was influenced by two main factors, i.e., the grout materials and the injection mechanisms introduced by the field grouting. On-site grout mapping revealed the major mechanism was fracturing accompanied with some permeation at deeper zones of sandy soils, where long-gel time suspension grout and solution grout were applied. The study found the compressibility and swelling potential of CL soils at a 0.5 m distance to grout hole could be reduced by 25% and 50%, respectively, due to the grouting. The effect on hydraulic conductivity of the CL soils appeared insignificant. The grouting slightly improved the cohesion of the CL soils by 10~15 kPa, and the friction angle appeared unaffected. The grouting had also improved the cohesion of the on-site SM soils by 10~90 kPa, while influences on the friction angle of soils were uncertain. Liquefaction resistances could be enhanced for the sandy soils within a 2~3 m extent to the grout hole. Average improvements of 40% and 20% on the liquefaction resistance were achievable for the sandy soils for earthquake magnitudes of 6 and ${\geq}7.5$, respectively, by the grouting.

A Comparative Analysis of Stormwater Runoff with Regard to Urban Green Infrastructure - A Case Study for Bundang Newtown, SungNam - (도시 녹지기반 특성에 따른 강우 유출수 비교 분석 - 성남시 분당신도시를 사례로 -)

  • Park, Eun-Jin;Kang, Kyu-Yi;Lee, Hyun-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.1-10
    • /
    • 2008
  • The study was aimed at analyzing the relationship between the characteristics of urban green infrastructure and stormwater runoff in a small urban watershed composed of 22 drainage basins. The green areas of which soils are not sealed and allow water infiltrate, were examined for different types of green spaces. In a comparative study for drainage basins of which green spaces are 15.5% and 34.4%, respectively, runoffs were not different with the size of green space. It was attributed to that the increase of runoff by greater road area offset the advantage of greater green area. Another comparative measurement of runoff for drainage basins with similar green area size showed that runoff decreased with greater permeable area (school ground area) and smaller road area. The runoff measurements could address that runoff rates are affected not only by green area size but also by the type of green area and other land covers related to permeability and flow into drainage. It implicated that the improvement of urban green infrastructure as a functional unit for water infiltration and interception is important for stormwater runoff management.

A numerical study on the seepage failure by heave in sheeted excavation pits

  • Koltuk, Serdar;Fernandez-Steeger, Tomas M.;Azzam, Rafig
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.513-530
    • /
    • 2015
  • Commonly, the base stability of sheeted excavation pits against seepage failure by heave is evaluated by using two-dimensional groundwater flow models and Terzaghi's failure criterion. The objective of the present study is to investigate the effect of three-dimensional groundwater flow on the heave for sheeted excavation pits with various dimensions. For this purpose, the steady-state groundwater flow analyses are performed by using the finite element program ABAQUS 6.12. It has been shown that, in homogeneous soils depending on the ratio of half of excavation width to embedment depth b/D, the ratio of safety factor obtained from 3D analyses to that obtained from 2D analyses $FS_{(3D)}/FS_{(2D)}$ can reach up to 1.56 and 1.34 for square and circular shaped excavations, respectively. As failure body, both an infinitesimal soil column adjacent to the wall (Baumgart & Davidenkoff's criterion) and a three-dimensional failure body with the width suggested by Terzaghi for two-dimensional cases are used. It has been shown that the ratio of $FS_{(Terzaghi)}/FS_{(Davidenkoff)}$ varies between 0.75 and 0.94 depending on the ratio of b/D. Additionally, the effects of model size, the shape of excavation pit and anisotropic permeability on the heave are studied. Finally, the problem is investigated for excavation pits in stratified soils, and important points are emphasized.

Diffusion of Cr(VI) in Porous Media (심층 지하에서의 육가 크롬 확산)

  • 현재혁
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.203-214
    • /
    • 1993
  • Underground Injection Control regulations for Class I injection wells require that the vertical dufusion be considered as a mechanism for transport of contaninants in evaluating containment Due to the low permeability in the confining aquitard, the movement of contaminants over the long term is controlled by the molecular diffusion. The movement can be predicted, using the Fick' S second law of diffusion. The diffusion coefficient in Fick' s law has been determined experimentally in this study. Instantaneous injection of $^{51}Cr$ was used to trace the distribution of Cr(VI) in soil plugs and an analytical solution was applied to calculate the diffusion coefficients. This study shows the effect of environmental factors, such as temperature, chloride concentration, applied amount of $^{51}Cr$, and bulk density of injection formations on diffusion of Cr(VI)

  • PDF

A Study on the WFS Co-mixtures by Small Scale Retaining Wall Test (모형옹벽실험을 이용한 폐주물사 혼합재의 지반공학 적용성 연구)

  • 조재윤;이관호;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.419-426
    • /
    • 2000
  • The purpose of this study is to present the application of WFS co-mixtures for retaining wall as flowable backfill. The fly ash, generated at the Tae-An thermoelectric power plant, was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Couple of laboratory tests and small scale retaining wall tests were performed to obtain the physical properties of the WFS co-mixtures and the possibility of backfill materials of retaining wall. The range of permeability for all the co-mixtures was from 3.0${\times}$10$\^$-3/ cm/s to 6.0${\times}$10$\^$-5/ cm/s. The unconfined strength of the 28-day cured specimens reached around 550kPa. Results of the consolidated-undrained triaxial test showed that the internal friction angle is between 33.5$^{\circ}$ and 41.8$^{\circ}$. The lateral earth pressure against wall decreased up to 80% of initial pressure within a 12 hours and the total lateral earth pressure is less than that of typical granular soil. It was enough to construct the backfill for the standard retaining of 6m with just two steps, like fill the co-mixtures for half of retaining wall, and then fill the others after 1 day. The stability of retaining wall for overturning and sliding increased as the curing time elapsed.

  • PDF