• 제목/요약/키워드: soil nutrient concentrations

검색결과 213건 처리시간 0.03초

인산 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향 (Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) Influenced by Phosphorus Concentrations in Fertigation Solution)

  • 최종명;박종윤
    • 생물환경조절학회지
    • /
    • 제16권4호
    • /
    • pp.358-364
    • /
    • 2007
  • 시비농도를 인위적으로 조절하여 잎들깨를 관비재배하면서 인산의 시비수준이 생장과 결핍증상 발현에 미치는 영향을 구명하고, 생육을 우수하게 유지할 수 있는 식물체 및 토양의 한계농도를 밝히기 위하여 본 연구를 수행하였다. 인산이 결핍될 경우 전체 지상부 생육이 심하게 억제되었으며, 노엽에서 초기증상이 발현되고, 엽병과 엽신이 자주색을 띄는 특징을 보였다. 증상이 나타난 부위는 점차 갈변하고 괴사하였다. 본 연구의 인산 시비수준 내에서는 농도가 높아질수록 식물 생육이 증가하여 0, 0.5 및 4.0mM 시비구에서 생체중이 각각 0.48g, 9.289 및 25.5g였고, 건물중이 0.06g, 1.46g 및 4.13g으로 조사되었다. 생육이 가장 우수하였던 4.0mM 처리에서 지상부 인산함량과 엽병추출액의 인산 농도가 1.78% 및 $2,040mg{\cdot}kg^{-1}$였고, 이 보다 10%낮은 식물 생육을 최저 한계점으로 판단한다면 각각 0.3% 및 $900mg{\cdot}kg^{-1}$ 이상의 인산 농도를 유지하도록 시비해야 한다고 판단하였다. 정식 65일 후 인산 4.0mM 처리의 토양 인산 농도가 $1.26mg{\cdot}L^{-1}$였으며, 이 또한 수량감소를 방지하기 위해 $0.57mg{\cdot}L^{-1}$ 이상의 토양 농도를 유지하도록 시비해야 할 것으로 판단하였다.

실험실 조건에서 부유식물과 침수식물의 영양염류 흡수능 및 특성 평가 (Evaluation of the Nutrient Uptakes of Floating and Submerged Plants under Experimental Conditions)

  • 이근주;성기준
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.71-77
    • /
    • 2012
  • The performance and characteristics of nutrient removal in wetlands influenced by plant type. We tested a floating plant, Eichhornia crassipes, and a submerged plant, Ceratophyllum demersum, under the same environmental conditions to understand the differences in nutrient uptake by these different plant forms. The total nitrogen and phosphorus in the water decreased in the following order: Water Only < Water + Soil < Floating Plants ${\approx}$ Submerged Plants and Water Only < Water+Soil < Floating Plants < Submerged Plants. Nitrogen and phosphorous concentrations increased in both plants; however, the phosphorous concentration was greater in C. demersum than E. crassipes. The submerged plant exhibited higher phosphorus uptake per unit biomass than the floating plant, but nitrogen uptake did not differ significantly. These results suggest that the presence of soil influences nitrogen and phosphorus removal from water, and that wetland plants play an important role in the assimilation and precipitation of phosphorus. Understanding the differences in contaminant removal performance and characteristics of various plant forms can help in the selection of diverse plants for constructed wetlands to improve water quality and provide ecosystem services such as wildlife habitat and landscape enhancement.

Mineral Status of Soils and Forages in Southwestern Punjab-Pakistan: Micro-minerals

  • Khan, Zafar Iqbal;Hussain, A.;Ashraf, M.;McDowell, L.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권8호
    • /
    • pp.1139-1147
    • /
    • 2006
  • This study was conducted to evaluate the trace elemental nutritive values of soil and forages collected from southwestern part of the province of Punjab, Pakistan. Soil and forage samples were collected fortnightly for two seasons. The concentrations of some trace minerals varied greatly among seasons and sampling periods. Seasonal effects were found in all soil micro-minerals except zinc, while forage iron, zinc, and selenium were affected by seasonal changes. Sampling periods effects were observed in all soil minerals and in forage copper, iron, zinc, and manganese only. All soil mineral levels except cobalt and selenium were sufficiently high to meet the requirements of plants for normal growth during both seasons. In contrast, soil Co and Se levels were severely deficient during both seasons and considered inadequate for plant growth. Soil Fe, Zn, Co, and Se levels were higher, and Cu and Mn lower during winter than those during summer. Forage Zn levels during summer were at marginal deficient levels, and in contrast, all other forage micro-minerals were within the required range for ruminants during both seasons. Although forage mico-minerals were within the range required by the ruminants, they were not sufficiently high to prevent the predisposition to various diseases caused by nutrient deficiency. Consequently, grazing animals at this location need continued mineral supplementation of these elements with a mixtures of high bio-availability rather than of high micro-mineral contents to support optimum ruminant productivity.

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsing
    • 한국생태학회:학술대회논문집
    • /
    • 한국생태학회 2002년도 VIII 세계생태학대회
    • /
    • pp.101-105
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37%/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70% of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

  • PDF

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • 제25권4호
    • /
    • pp.235-239
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37$\%$/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70$\%$ of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

Polyacrylic Acid Sodium Salt를 혼합한 세 종류 상토에 용과린의 시비 수준이 포트멈 'Lima Honey'의 생육 및 무기원소 흡수에 미치는 영향 (Effect of Application Rate of Fused Superphosphate in Three Media Containing Polyacrylic Acid Sodium Salt on Growth and Nutrient Contents of Potted Chrysanthemum 'Lima Honey')

  • 최종명;왕현진;최택용
    • 생물환경조절학회지
    • /
    • 제15권1호
    • /
    • pp.21-34
    • /
    • 2006
  • This research was conducted to determine the plant growth and nutrient contents of potted chrysanthemum 'Lima Honey' as influenced by application rate of fused superphosphate (FSSP) in three root media, peatmoss+vermiculite (1:1, v/v; PV), peatmoss+composted rice hall (1:1, v/v; PR), and peatmoss+composted pine bark (1:1, v/v; PB). All root media contained polyacrylic acid sodium salt at a rate of $4.5g L^{-1}$. The treatment of $1.4g L^{-1}$ in PV and those of $0.7g L^{-1}$ in PR and PB had the greatest fresh and dry weights in each root medium at both 43 and 80 days after transplanting. Elevated application rates of FSPP increased tissue contents of N, P, and K at both 43 and 80 days after transplanting in PV medium. However, the differences in tissue contents of N, P and K in PR medium were less significant among treatments of FSPP. The pre-planting FSPP also less affected the tissue contents of nutrients at 80 days after transplanting as compared to those at 43 days after transplanting. Elevated application rates of FSPP in PV medium increased EC and the concentrations of $NO_3,\;P_2O_5$, K, Ca, and Mg in soil solution of root media at 43 days after transplanting. The EC in PV medium at 80 days after transplanting was higher than that at 43 days after transplanting. The EC in all root media at 80 days after transplanting was not different among treatments of FSPP.

칼륨 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향 (Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) as Influenced by Potassium Concentrations in the Fertigation Solution)

  • 최종명;박종윤
    • 생물환경조절학회지
    • /
    • 제16권4호
    • /
    • pp.372-378
    • /
    • 2007
  • 본 연구는 칼륨의 시비농도를 인위적으로 조절하여 잎들깨의 생장과 결핍증상 발현에 미치는 영향을 구명하고, 생육을 우수하게 유지할 수 있는 식물체 및 토양의 한계농도를 밝히기 위하여 수행하였다. 칼륨 결핍 증상은 노엽에서 시작되었으며, 노엽의 가장자리가 황변하고, 황변된 부위가 점차 갈색으로 변화되었으며, 갈변 후 괴사하였다. 칼륨 시비농도를 8mM까지 높일 경우 엽장과 줄기직경이 길거나 굵어졌으며, 생체중 및 건물중이 무거워지고, 엽록소 함량이 감소하였다. 생육이 우수하였던 K 8mM 시비구의 식물체당 건물중과 K 함량이 5.01g과 2.76%였으며, 생장억제를 방지하기 위해서는 1.7% 이상의 K 함량을 가져야 한다고 판단되었다. 칼륨을 8mM로 시비한 처리의 엽병추출액내 K 농도가 $12,289mg{\cdot}kg^{-1}$였고, 1:2로 추출한 토양농도가 $11.65mg{\cdot}L^{-1}$였으며, 엽병추출액은 $8,700mg{\cdot}kg^{-1}$이상, 토양용액은 $4.5mg{\cdot}L^{-1}$을 유지하도록 시비하여야 수량 감소를 방지할 수 있다고 판단되었다.

솜대 조림지와 확산지의 바이오매스, 임상, 토양의 양분 특성 (Nutrient Characteristics of Biomass, Forest Floor, and Soil between Plantation and Expansion Sites of Phyllostachys nigra var. henonis)

  • 곽유식;백경원;최병길;하지석;배은지;김춘식
    • 한국산림과학회지
    • /
    • 제110권1호
    • /
    • pp.35-42
    • /
    • 2021
  • 본 연구는 대나무 확산에 있어서 토양 성질이 미치는 영향을 조사하기 위해 매년 시비가 실시된 솜대 조림지와 미시비 확산지를 대상으로 바이오매스 부위별 양분 농도와 임상 및 토양 30 cm 깊이의 양분 특성을 비교하였다. 솜대 조림지의 잎, 가지, 줄기 내 질소와 인 농도는 확산지에 비해 유의적으로(P < 0.05) 높았으나, 임상의 양분 농도는 조림지와 확산지 사이에 유의적인 차이가 없었다. 토양 0~30 cm 깊이의 평균 유기탄소는 조림지가 30.80 mg g-1으로 확산지 15.64 mg g-1에 비해 유의적으로 높았다. 평균 전질소 농도의 경우 조림지 2.47 mg g-1, 확산지 1.24 mg g-1, 인은 조림지 10.27 mg kg-1, 확산지 5.61 mg kg-1, 포타슘은 조림지 0.27 cmolc kg-1, 확산지 0.16 cmolc kg-1로 조림지가 확산지에 비해 유의적으로 높았다. 본 연구 결과에 따르면 토양 양분 상태는 솜대의 인접 산림지역으로 확산에 큰 영향을 끼치지 않는 것으로 나타났다.

논과 밭 지하수의 영양물질 농도 특성 (Characteristics of Nutrient Concentrations in Groundwater under Paddy and Upland Fields)

  • 장훈;김진수;김영현;송철민
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.67-74
    • /
    • 2011
  • The objective of this study was to compare concentrations of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in groundwater under paddy and upland fields, and surface water recharging from a rural mixed land-use watershed. Chinese cabbage and hot pepper were cultivated on the upland field plot. The TN concentrations in upland groundwater showed double peaks (4.7, 4.3 mg/L, respectively) in April 2009 shortly after fertilizer application, indicating that TN concentrations are greatly influenced by fertilization. However, the TN concentrations in paddy groundwater were always lower than 2.0 mg/L irrespective of fertilization. Whereas the mean concentrations of TN and $NO_3$-N in upland groundwater significantly (p<0.05) higher than those in surface water, the mean concentrations of TP and $PO_4$-P in upland groundwater were significantly lower than those in surface water. On the other hand, the mean concentrations of TN, $NO_3$-N, TP and $PO_4$-P in paddy groudwater were significantly (p<0.05) lower than those in surface water. The TN concentrations in upland groundwater were generally higher than those in surface water during early April to early December due to the effect of fertilization, but vice versa in the other periods. In contrast, the TP concentrations in upland groundwater were always lower than those in surface water due to the sorption of inorganic phosphorous by soil. Moreover, the TN and TP concentrations in paddy groundwater were always lower than those in surface water, and therefore paddy groundwater may dilute nutrient concentrations in surface water when paddy groundwater and surface water mix.

수질 환경을 고려한 농경지 토양 탄소 관리 방안 (Agricultural Soil Carbon Management Considering Water Environment)

  • 이경숙;윤광식;최동호;정재운;최우정;임상선
    • 환경영향평가
    • /
    • 제22권1호
    • /
    • pp.1-17
    • /
    • 2013
  • Carbon sequestration on soil is one of the counter measurements against climate change in agricultural sector. Increasing incorporation of organic fertilizer would increase soil organic carbon (SOC) but it could bring high potential of nutrient losses which would result in water quality degradation. In this paper, literature review on soil organic carbon behavior according to agricultural management is presented. The results of field experiment to identify the effect of organic and commercial fertilizer applications on SOC and runoff water quality were also presented. Field experiment confirmed increased SOC and nutrient concentrations in runoff water as application rate of organic fertilizer increase. The potential use of simulation model to develop best agricultural management practice considering carbon sequestration and water quality conservation at the same time is discussed and monitoring and modeling strategies are also suggested to achieve the goal.