• Title/Summary/Keyword: soil moisture characteristics

Search Result 544, Processing Time 0.03 seconds

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

The Frost Heaving Susceptibility Evaluation of Subgrade Soils Using Laboratory Freezing System (실내 동상시스템을 이용한 노상토의 동상민감성 평가)

  • Shin, Eun Chul;Ryu, Byung Hyun;Park, Jeong Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.13-23
    • /
    • 2013
  • The Korean Peninsula is considered as a seasonal frozen area that is thawed in the spring and frozen in the winter. The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing tests simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the geotechnical structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In this study, ten soil samples are prepared. The basic physical property tests were performed by following the Korean Industrial Standard and the soil specimens were classified by the Unified Soil Classification System (USCS). These classified soils are used to perform the laboratory opened systems freezing test in order to determine the frost heaving characteristics of soils such as unfrozen water content, heaving amount, and freezing depth.

Regression Modeling of Water-balance in Watershed (유역(流域) 물 수지(收支)의 회귀모형화(回歸模型化))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.324-333
    • /
    • 1983
  • Modeling of longterm runoff is theoritically based on waterbalance analysis. Simplified equation of water balance with rainfall, evapotranspiration and soil moisture storage could be formulated into regression model with variables of rainfall, pan evaporation and previous-month streamflow. The hydrologic response of water shed could be represented lumpedly, qualitatively and deductively by regression coefficients of water-balance regression model. Characteristics of regression modeling of water-balance were summarized as follows; 1. Regression coefficient $b_1$ represents the rate of direct runoff component of precipitation. The bigger the drainage area, the less $b_1$ value. This means that there are more losses of interception, surface detension and transmission in the downstream watershed. 2. Regression coefficient $b_2$ represents the rate of baseflow due to changes of soil moisture storage. The bigger the drainage area and the milder the watershed slope, the bigger b, value. This means that there are more storage capacity of watershed in mild downstream watershed. 3. Regression coefficient $b_3$ represents the rate of watershed evaporation. This depends on the s oil type, soil coverage and soil moisture status. The bigger the drainage area, the bigger $b_3$ value. This means that there are more watershed evaporation loss since more storage of surface and subsurface water would be in down stream watershed. 4. It was possible to explain the seasonal variation of streamflow reasonably through regress ion coefficients. 5. Percentages of beta coefficients what is a relative measure of the importance of rainfall, evaporation and soil moisture storage to month streamflow are approximately 89%, 9% and 11% respectively.

  • PDF

Comparison of the Floodplain Vegetation Structure According to Existence of Lateral Connectivity in Streams (하천의 횡적 연결성 유무에 따른 홍수터 식생 구조의 비교)

  • Chu, Yunsoo;Jin, Seung-Nam;Cho, Hyunsuk;Cho, Kang-Hyun
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • The flood pulse in streams enhances the biodiversity and ecosystem services of the channel-floodplain ecosystems by exchanging water, nutrients, sediments and organisms. However, the lateral connectivity in most streams of Korea has been disrupted by the levee constructions for the purpose of flood control and land use of floodplains. To compare the characteristics of floodplain vegetation according to existence of lateral connectivity in streams, we investigated the geomorphological and soil environmental factors and structures and distribution of vegetation in the floodplains connected and isolated by levee to the channel in Cheongmi Stream, Seom River, Hwangguji Stream, Mangyeong River, Gomakwon Stream, and Boseong River, Korea. In comparison of soil environments, moisture and clay contents were higher in the isolated floodplain than in the connected floodplain. According to the result of principal component analysis (PCA) using environmental data, the environments of the connected floodplain and the isolated floodplain were separated by soil moisture contents, soil texture and distribution altitude of the vegetation. The results of detrended correspondence analysis (DCA) using vegetation data showed that the isolated floodplain was dominated by the hydropythic communities of diverse life form and that the connected floodplain was dominated by the hygrophytic communities that endure disturbance. In conclusion, it is thought that the vegetation of the floodplain changed to the lentic wetland vegetation dominated by diverse hydrophytes as the floodplain was isolated from the channel by artificial levees.

Potential Application Topics of KOMPSAT-3 Image in the Field of Precision Agriculture

  • Kim, Seong-Joon;Lee, Mi-Seon;Kim, Sang-Ho;Park, Genn-Ae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.17-22
    • /
    • 2006
  • Potential application topics of KOMPSAT-3 image in the field of precision agriculture are suggested. The topics can be categorized as fundamental and applied ones that have contents of static and dynamic characteristics respectively. As fundamental topics, precision information of agriculture that is related to farmland and its crop attributes, precision information of rural infrastructure that is related to rural village and its facilities, precision information of stream environment that is related to rural water resources and its facilities, and precision information of eco-environment that is especially related to riparian ecology and environmental status are included. As applied topics, precision rural water resources that has thematic contents of continuous and event-based runoff, spatial and temporal soil moisture and evapotranspiration, precision agricultural watershed environment that has the contents of spatial and temporal soil loss, sediment and pollutants transport, and precision temporal and spatial crop growth that has the contents of temporal crop texture, spectral reflectance, leaf area index, spatial crop protein information.

Construction of Resource Recovery System for Organic Wastes (유기성 폐기물의 자원화 체제구축에 관한 연구)

  • 양재경;최경민
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.2
    • /
    • pp.290-308
    • /
    • 1999
  • In this study a system for the treatment or recyling of organic wastes from both urban and rural area was recommended. It was developed based on the resource recovery system regarding human being by four tectnologies; forage, methane production, high-grade composting and complete decomposition. High quality compost can be produced by combining several kind of wastes produced from urban and agricultural areas. High quality compost must possess not only general characteristics of ordinary compost, but also a superior ability to improve the soil properties and must contain more nutrients for plant. Cedar chips were recommended as the main bulking agent to adjust moisture contents and air permeability. Charcoal and zeolite can be used not only as the second bulking agent but also as fertilizer for improve the soil amendment. Complete decomposition of organic wastes is defined by organic matter being completely converted to $CO_2$ and water. All the input water was evaporated by the heat produced through the oxidation of organic matter, In the present study, the complete treatments were successfully achieved for Shochu wastewater, swine wastes, thickened excess sewage sludge, wastes produced by Chinese restaurant and anaerobic digested sludge. First of all, recycling center of organic wastes should be established for the protect the environments and effective recovery of organic resources. This may means the way to derive the recovery of human value.

  • PDF

POTENTIAL APPLICATION TOPICS OF KOMPSAT-3 IMAGE IN THE FIELD OF PRECISION AGRICULTURE MODEL

  • Kim, Seong-Joon;Lee, Mi-Seon;Kim, Sang-Ho;Park, Geun-Ae
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.432-435
    • /
    • 2006
  • Potential application topics of KOMPSAT-3 image in the field of precision agriculture are suggested. The topics can be categorized as fundamental and applied ones that have contents of static and dynamic characteristics respectively. As fundamental topics, precision information of agriculture that is related to farmland and its crop attributes, precision information of rural infrastructure that is related to rural village and its facilities, precision information of stream environment that is related to rural water resources and its facilities, and precision information of eco-environment that is especially related to riparian ecology and environmental status are included. As applied topics, precision rural water resources that has thematic contents of continuous and event-based runoff, spatial and temporal soil moisture and evapotranspiration, precision agricultural watershed environment that has the contents of spatial and temporal soil loss, sediment and pollutants transport, and precision temporal and spatial crop growth that has the contents of temporal crop texture, spectral reflectance, leaf area index, spatial crop protein information.

  • PDF

The Characteristics of Sedimentation and Self-weight Consolidation for Dredged Soils of the Westcoast (서해안 준설토의 침강 및 자중압밀 특성에 관한 연구)

  • Kim, Min-Gyu;Im, Jong-Chul;Kwon, Jeong-Geun;Joo, In-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1147-1157
    • /
    • 2009
  • Recently this country has carried out the coast reclamation centering on the west and south coast for effective practical use of a country, considering purchase of materials and environmental problem, and carrying into effort the reclamation method after dredging the ground in the ocean. In this large scale ocean dredging reclaiming work, prediction the ground subsidence after reclaiming is very important for not only expense lose by overestimation or underestimation but also hereafter the best suited project establishment. this study carries out sedimentation and self weight consolidation in each cases and searches the features to analyze effect on kinds of soil of ground before dredging, abandonment height when it abandons momentary, void ratio, difference of abandonment height when it abandons by stages and difference of particle content of spoil.

  • PDF

Optimization of pipeline Operation for Stable Landfill Gas Collection Using Numerical Analysis (안정적 매립가스 포집을 위한 배관망 최적운용 분석)

  • 김인기;김세준;허대기;김현태;성원모;배위섭
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.43-52
    • /
    • 2001
  • It is important that the gas collected from wells completed in waste landfill should be continuously and stably transported to pre-treatment stage through pipelines. The transport is generally affected by fluid flow characteristics of landfill, gas reserves, leachate moisture holdup in pipeline, structures and dimensions of pipeline network, etc. This paper analyzes the pipeline transport and collection mechanism for gas generated in a durable waste landfill. From the results, the optimal controlled scheme of blower inlet pressure is proposed for the prevention of trapped gas pocket zones.

  • PDF

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF