• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.028 seconds

Constitutive Models for Decomposed Granite Soil and Their Application to Tunnelling Problem (화강토의 구성방정식 및 터널 해석에의 적용)

  • ;D. M. Potts
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.131-139
    • /
    • 2001
  • 화강토와 관련된 지반문제의 거동예측을 위한 수치해석의 적용이 양적인 면에서는 많이 확대되어왔지만 해석결과에 지대한 영향을 미치는 구성방정식 등 수치해석 모델링을 개선하고자 하는 노력은 부족하였다. 화강토 거동의 특징은 내재적 결합력으로 인한 구조화의 거동을 나타내는 것이며, 항복면이 평균유효응력 축에 대칭이고 Non-associated 소성거동을 보인다는 점이다. 본 연구에서는 이러한 화강토 거동을 표현하기 위하여 일반화된 한계상태모델을 도입하고, 이를 화강토의 경화거동 모델링이 가능하도록 확장하였다. 제안된 모델을 이용한 삼축시험의 유한요소 시뮬레이션 결과는 측정결과와 좋은 일치를 보였다. 화강토 지반내 터널에 대한 유한요소해석을 수행한 결과, 비선형 탄성모델과 조합된 확장된 한계상태모델이 현장계측결과와 잘 일치하는 결과를 주었다.

  • PDF

A Mathematical Model Development for Microbial Arsenic Transformation and Transport

  • Lim, Mi-Sun;Yeo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.318-322
    • /
    • 2004
  • Arsenic is a toxic and carcinogenic metalloid, whose sources in nature include mineral dissolution and volcanic eruption. Abandoned mines and hazardous waste disposal sites are another major source of arsenic contamination of soil and aquatic systems. To predict concentrations of the toxic inorganic arsenic in aqueous phase. the biogeochemical redox processes and transport behavior need to be studied together and be coupled in a reactive transport model. A new reaction module describing the fate and transport of inorganic arsenic species (As(II)), dissolved oxygen, nitrate, ferrous iron, sulfate, and dissolved organic carbon are developed and incorporated into the RT3D code.

  • PDF

Ultimate Bearing Capacity of Strip Foundation on Geogrid -Reinforced Clayey Soil

  • Shin, Eun-Chul;Choi, Chan-Yong
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.77-86
    • /
    • 1997
  • Laboratory model test results for the ultimate bearing capacity of a surface strip foundation supported by a near-saturated clayey soil reinforced with layers of geogrid have been presented. The optimum values for the width of the reinforcement layers, the depth of reinforcement, and the location of the first layer of geogrid for mobilization of maximum bearing capacity have been determined. Based on the model test results, an empirical procedure to estimate the ultimate bearing capacity has been developed.

  • PDF

The Effects of Soil Model in the Grounding System Design (접지시스템 설계에서 대지구조 모델의 영향 분석)

  • 한기항;심건보;오기봉
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.313-318
    • /
    • 2002
  • Purpose of the grounding system design are establish a safe environment for personnel as well as the general public in the vicinity of the power system equipment, and establish a low resistance connection to earth such that protective devices detect and isolate faults quickly and potential rise of the grounding system does not exceed a value which could damage electrical equipment. This paper deals with the grounding system design for the electric facilities. In this paper, emphasize the necessity of the computer programs for the grounding system designs. Especially, earth soil models for the grounding system design are must used two-layered soil model.

  • PDF

Basic Study on Mechanism of Cave-in in Road through Laboratory Model Tests (실내모형시험을 통한 도로함몰 매커니즘에 대한 기초적 연구)

  • Kweon, Gichul;Kim, Sanglok;Hong, Seokwoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.11-19
    • /
    • 2016
  • PURPOSES : This study identifies the causes and the mechanism of the occurrence of underground cavities. METHODS : A case study on cave-in and a series of model tests with a small soil chamber were conducted. RESULTS : A hypothesis about the mechanism of the cave-in in road was established, and the basic influencing factors on underground cavity expansion were identified. CONCLUSIONS : It was found that the characteristics of shear strength of soil and direction of water flow had a larger influence on cavity formation and expansion than the characteristics of internal erosion. In addition, large cavities suddenly expanded when cavities were caused owing to breakage of buried sewer pipe.

Slope Stability of Waste Landfill Using Textured Geomembrane (Textured 지오맴브레인을 적용한 폐기물 매립장의 사면 안정성 연구)

  • 신은철;윤석호;심진섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.141-144
    • /
    • 2000
  • The slope stability of waste landfill has been a problem in domestic and foreign countries. Waste landfills are being constructed in a reclaimed land or mountainous area. But most of these places are consisted of steep slope and hence it is necessary to use the geosynthetic liners in there. The large size direct shear test(30cm x 30cm) equipment was used to determine the interface friction angles between CCLs and soil & geomembranes. The centrifuge model tests were performed to investigate the slope stability with considering various geosynthetic liners conditions and degree of slope. The results of centrifuge model test indicate that the degree of saturation of GCL, roughness of geomembrane, and slope of landfill have greatly influenced on the slope stability of solid waste landfill.

  • PDF

Reductive Dechlorination of Tetrachloroethylene in Soils by Fe(II)-Based Degradative Solidification/Stabilization

  • Hwang, Inseong;Batchelor, Bill
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.49-52
    • /
    • 2001
  • An experimental study was conducted to test the feasibility of degradative solidification/stabilization (DS/S) process in treating tetrachloroethylene (PCE) in solid phase systems. The Fe(II)-based ds/s process successfully treated PCE in a soil at the reaction rates that would not allow significant release of the contaminant in the environment. A leach model was also developed that could describe the relative importance of leaching and degradation in ds/s. The first and second Damkohler numbers and dimensionless time were important parameters that determined leaching precesses in wastes treated by ds/s.

  • PDF

A Parametric Study on Ice Scouring Mechanism for Determination of Pipeline Burial Depths

  • Park, Kyung-Sik;Lee, Jong-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.29-40
    • /
    • 2004
  • Interaction of grounded ice ridges with underlying seabed is one of the major considerations in the design of Arctic pipeline system. Previously several ice scour models were developed by researchers to describe the ice scour-seabed interaction mechanism. In this paper, a parametric study on ice scouring mechanism is performed and the limitation of ice scour-seabed interaction models is discussed. Simple laboratory tests are carried out and then the shape pattern of deposited soil around the ice is redefined. New ice scour model assumes trapezoidal cross section based on the field observation data. Ice scour depth and soil resistance forces on seabed are calculated with varying the keel angle of a model ice ridge.

3차원 토양 실험장치에서 동전기-펜턴 공정의 전기삼투흐름 모사

  • 박지연;김상준;이유진;기대정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.158-161
    • /
    • 2003
  • Removal of phenanthrene by electrokinetic method combined with Fenton-like process was studied in a model system. The scale of reactor was 100cm in length, 100cm in width, and 70cm in height. The distance between electrodes was 70cm. Indonesia kaoline was selected as a model soil. When constant voltage of 100 V was applied to this system, current decreased from 200 mA to 100 mA for 14 days. Total accumulated EOF was about 55,000 mL. The concentration of phenanthrene near anode was very low because direction of electroosmosis was from anode to cathode and hydrogen peroxide was supplied to anode reservoir. Phenanthrene concentration was increased as the location was far from anode because hydrogen peroxide was gradually decomposed and then the rate of hydroxyl radical production was decreased.

  • PDF

Numerical study for vibration response of concrete beams reinforced by nanoparticles

  • Heidari, Ali;Keikha, Reza;Haghighi, Mohammad Salkhordeh;Hosseinabadi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.311-316
    • /
    • 2018
  • Vibration of concrete beams reinforced by agglomerated silicon dioxide ($SiO_2$) nanoparticles is studied based on numerical methods. The structure is simulated by Euler-Bernoulli beam model and the Mori-Tanaka model is used for obtaining the effective material properties of the structure. The concrete beam is located in soil medium which is modeled by spring elements. The motion equations are derived based on energy method and Hamilton's principle. Based on exact solution, the frequency of the structure is calculated. The effects of different parameters such as volume percent of $SiO_2$ nanoparticles and agglomeration, soil medium and geometrical parameters of beam are shown on the frequency of system. The results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency increases.