• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.04 seconds

An Assessment Model on Sustainability of Local City (지방도시의 지속가능성 평가모형)

  • Hong, Young-Rok;Kwon, Sang-Zoon;Myung, Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.4
    • /
    • pp.1-12
    • /
    • 1999
  • This study aims to find basic data for using the quantitative assessment of the sustainability and establishing the systematic index of the planning for local cities to consider the environmentally sound and sustainable development. The research designs to review professional responding to surveys preceded by separate questionnaires and interviews from book reviews, and suggests to make an assessment model of the sustainability for local cities. The research found consequently as follows. Firstly, the research survey items were decides totally 52, grouped 9 assessmental issues and distributed under 4 assessmental domains for the sustainability from the references of book reviews. Secondly, the research result concentrated on the followings from the professional responding to surveys. 1. A most influent factor is the distribution of animals and plants in a nature domain. The next influent factors are the ratio of mass-transportation systems, the numbers of the species of animals and plants, the acreage of conservative forestry, the numbers of reused water resources, and the usage number of water supply, orderly in the nature domain. 2. A most influent factor is the usage number of synthetic detergents in a pollution domain. The next influent factors are the volume of waste water, the number of registered vehicles, the degree of soil pollution, and the charge of development imposition, orderly in the pollution domain. 3. A most influent factor is the acreage of athletic facilities, in an urban domain. the next influent factors are the acreage of recreational facilities, the number and acreage of cultural assets, the number of cultural facilities, the acreage of landscape conservation area, the charge of cultural asset management, orderly in the urban domain. 4. A most influent factor is the number of waste disposal facilities in a participation domain. The next influent factors are the capacity of reused waste, the usage of synthetic detergents, the ratio of waste water disposal, orderly in the participation domain. 5. A most contributed influent domain to the assessment of the sustainability for local cities is the urban domain. The next influent domains are nature domain, participation domain, and pollution domain, orderly in the contribution of the assessment of the sustainability. But, the pollution domain is little relationship with the sustainability. Therefore, it is clear that the abundant greens and the improved level of culture are dominant influences on the sustainabiligy, as like improving the ratio of roadside trees, the acreage of parks, and enlarging the number of cultural facilities.

  • PDF

Outlook Analysis of Future Discharge According to Land Cover Change Using CA-Markov Technique Based on GIS (GIS 기반 CA-Markov 기법을 이용한 토지피복 변화에 따른 미래 유출량 전망 분석)

  • Park, Jin-Hyeog;No, Sun-Hee;Lee, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.25-39
    • /
    • 2013
  • In this study, the change of the discharge according to the land cover change which acts as one of dominant factors for the outlook of future discharge was analyzed using SWAT(Soil and Water Assessment Tool) model for Yongdam and Daecheong Dam Watershed in the Geum River Basin. The land cover maps generated by Landsat TM satellite images in the past 1990 and 1995 were used as observed data to simulate the land cover in 2000 by CA-Markov serial technique and after they were compared and verified, the changes of land cover in 2050 and 2100 in the future were simulated. The discharge before and after the change of land cover by using input data of SWAT model was compared and analyzed under the A1B scenario. As a result of analyzing the trend in the elapses of year on the land cover in the Geum River Basin, the forest and rice paddy class area steadily decreased while the urban, bare ground and grassland classes increased. As a result of analyzing the change of discharge considering the future change of the land cover, it appeared that the discharge considering the change of land cover increases by 1.83~2.87% on the whole compared to the discharge not considering the change of land cover.

Assessing the Effects of Climate Change on the Geographic Distribution of Pinus densiflora in Korea using Ecological Niche Model (소나무의 지리적 분포 및 생태적 지위 모형을 이용한 기후변화 영향 예측)

  • Chun, Jung Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.219-233
    • /
    • 2013
  • We employed the ecological niche modeling framework using GARP (Genetic Algorithm for Ruleset Production) to model the current and future geographic distribution of Pinus densiflora based on environmental predictor variable datasets such as climate data including the RCP 8.5 emission climate change scenario, geographic and topographic characteristics, soil and geological properties, and MODIS enhanced vegetation index (EVI) at 4 $km^2$ resolution. National Forest Inventory (NFI) derived occurrence and abundance records from about 4,000 survey sites across the whole country were used for response variables. The current and future potential geographic distribution of Pinus densiflora, one of the tree species dominating the present Korean forest was modeled and mapped. Future models under RCP 8.5 scenarios for Pinus densiflora suggest large areas predicted under current climate conditions may be contracted by 2090 showing range shifts northward and to higher altitudes. Area Under Curve (AUC) values of the modeled result was 0.67. Overall, the results of this study were successful in showing the current distribution of major tree species and projecting their future changes. However, there are still many possible limitations and uncertainties arising from the select of the presence-absence data and the environmental predictor variables for model input. Nevertheless, ecological niche modeling can be a useful tool for exploring and mapping the potential response of the tree species to climate change. The final models in this study may be used to identify potential distribution of the tree species based on the future climate scenarios, which can help forest managers to decide where to allocate effort in the management of forest ecosystem under climate change in Korea.

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF

Development of Western Cherry Fruit Fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), after Overwintering in the Pacific North West Area of USA (미국 북서부지역에 발생하는 서부양벚과실파리의 발생 월동 후 발생 동태에 관한 연구)

  • Song, Yoo-Han;Ahn, Kwang-Bok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.217-227
    • /
    • 2007
  • The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera:Tephritidae), is the most important pest of cultivated cherries in the Pacific Northwest area of the United States, being widely distributed throughout Oregon, Washington, Montana, Utah, Idaho, Colorado and parts of Nevada. The control of R. indifferens has been based on calendar sprays after its first emergence because of their zero tolerance for quarantine. Therefore, a good prediction model is needed for the spray timing. This study was conducted to obtain the empirical population dynamic information of R. indifferens after overwintering in the major cherry growing area of the Pacific Northwest of the United States, where the information is critically needed to develop and validate the prediction model of the fruit fly. Adult fly populations were monitored by using yellow sticky and emergence traps. Larvae growth and density in fruits were observed by fruit sampling and the pupal growth and density were monitored by pupal collection traps. The first adult was emerged around mid May and a large number of adults were caught in early June. A fruit had more than one larva from mid June to early July. A large number of pupae were caught in early July. The pupae were collected in various period of time to determine the effect of pupation timing and the soil moisture content during the winter. A series of population density data collected in each of the developmental stage were analyzed and organized to provide more reliable validation information for the population dynamic models.

Microbiological Hazard Analysis of Ginseng Farms at the Cultivation Stage to Develop a Good Agricultural Practices (GAP) Model (인삼의 GAP 실천모델 개발을 위한 재배단계의 미생물학적 위해도 평가)

  • Shim, Won-Bo;Kim, Jeong-Sook;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.312-318
    • /
    • 2013
  • This study validated microbiological hazards of ginseng farms at the cultivation stage and suggested recommendations to develop a good agricultural practices (GAP) model. A total of 96 samples were collected from cultivation environments (soil, irrigation water, and atmosphere), plants (ginseng and its leaf), personnel hygiene (glove, cloth, and hand) of 3 ginseng farms (A, B, and C) and were tested to analyze sanitary indicator bacteria (aerobic plate count, coliforms and Escherichia coli), major foodborne pathogens (E. coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Bacillus cereus), and fungi. Total bacteria, coliform, and fungi in the 3 ginseng farms were detected at the level of 1.3~6.0, 0.1~5.0, and 0.4~4.9 v/g (or mL, hand, and $100cm^2$), respectively. Only irrigation water collected from one ginseng farm was confirmed to be E. coli positive. In case of pathogenic bacteria, B. cereus was detected at levels of 0.1~5.0 log CFU/g (or mL, hand, and $100cm^2$) in all samples, but other pathogen bacterias were not detected in any samples from all farms. Although E. coli were detected in irrigation water, the level of microbial for the three farms was lower than the regulation limit. According to the results, the ginsengs produced from the 3 farms were comparatively safe with respect to microbiological hazard. However, cross-contamination of bacteria from environments and workers to ginseng has been considered as potential risks. Therefore, to minimize microbial contamination in ginseng, GAP model should be applied for ensuring the safety of ginsengs.

A Trend of Back Ground Surface Settlement of Braced Wall Depending on the Joint Dips in Rocks under the Soil Strata (복합지반 굴착 시 암반층 절리경사 각도별 흙막이 벽체 배후 지표침하의 경향)

  • Bae, Sang-Su;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.83-96
    • /
    • 2016
  • The surface settlement of the back ground of a braced wall due to the ground excavation has the great influence on the safety of the surrounding area. But it is not easy to predict the settlement of the surrounding area due to proud excavation. Estimation of the settlement of the surface ground induced by the deformation of the braced wall is performed by FEM and empirical method (Peck, Clough etc). In this research, surface settlement of the back ground braced wall depending on the joint dips in rocks during excavating the composit ground was measured at the large scale model test (standard: $0.3m{\times}0.3m{\times}0.5m$). The scale of model test was 1/14.5 and the ground was excavated in ten steps. Earth pressure on the braced wall and ground surface settlement on the back ground of a braced wall were investigated. The surface settlement during the excavation depended on the joint dips in rocks on of the ratio of rock layer. Maximum earth pressure and maximum surface settlement were masured at the same excavation step. In accordance with the increase of the rock layer dips and rock layer ratio, the ground surface settlement increased. The maximum ground surface settlement was 17 times larger at 60 degree joint dips in rocks than that of the horizontal ground conditions. And the position of the maximum surface settlement by empirical method was calculated at the point, which was 17%~33% of excavation depth. In accordance with the increase of the rock layer dips and rock layer ratio, the ground maximum surface settlement increased. The ground surface settlement of composite ground is smaller than that of the empirical.

Development of numerical model for estimating thermal environment of underground power conduit considering characteristics of backfill materials (되메움재 특성을 고려한 전력구 열환경 변화 예측 수치해석모델 개발)

  • Kim, Gyeonghun;Park, Sangwoo;Kim, Min-Ju;Lee, Dae-Soo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The thermal analysis of an underground power conduit for electrical cables is essential to determine their current capacity with an increasing number of demands for high-voltage underground cables. The temperature rises around a buried cable, caused by excessive heat dissipation, may increase considerably the thermal resistance of the cables, leading to the danger of "thermal runaway" or damaging to insulators. It is a key design factor to develop the mechanism on thermal behavior of backfilling materials for underground power conduits. With a full-scale field test, a numerical model was developed to estimate the temperature change as well as the thermal resistance existing between an underground power conduit and backfill materials. In comparison with the field test, the numerical model for analyzing thermal behavior depending on density, moisture content and soil constituents is verified by the one-year-long field measurement.

Evaluation of Hydrometeorological Components Simulated by Water and Energy Balance Analysis (물수지와 에너지수지 해석에 따른 수문기상성분 평가)

  • Ji, Hee Sook;Lee, Byong Ju;Nam, Kyung Yeub;Lee, Chul Kyu;Jung, Hyun Sook
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.25-35
    • /
    • 2014
  • The objective of this study is to evaluate TOPLATS land surface model performance through comparison of results of water and energy balance analysis. The study area is selected Nakdong river basin and high resolution hydrometeorological components of which spatio-temporal resolution is 1 hr and 1 km are simulated during 2003 to 2013. The simulated daily and monthly depth of flows are well fitted with the observed one on Andong and Hapcheon dam basin. In results of diurnally analysis of energy components, change pattern throughout the day of net radiation, latent heat, sensible heat, and ground heat under energy balance analysis have higher accuracy than ones under water balance analysis at C3 and C4 sites. Especially, root mean square errors of net radiation and latent heat at C4 site are shown very low as 22.18 $W/m^2$ and 7.27 $W/m^2$, respectively. Mean soil moisture and evapotranspiration in summer and winter are simulated as 36.80%, 33.08% and 222.40 mm, 59.95 mm, respectively. From this result, when we need high resolution hydrometeorological components, energy balance analysis is more reasonable than water balance analysis. And this results will be used for monitor and forecast of weather disaster like flood and draught using spatial hydrometeorological information.

A Study on the Lateral Flow in Polluted Soft Soils (오염된 연약지반의 측방유동에 관한 연구)

  • 안종필;박상범
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.175-190
    • /
    • 2001
  • This study investigates the existing theoretical backgrounds in order to examine the behavior of lateral flow according to the plasticity of soils when unsymmetrical surcharge is worked on polluted soft soils by comparing and analyzing the results measured through model tests. Model tests are canied out as follows soil tank, bearing frame and bearing plate are made. By increasing unsymmetrical surcharge to the ground soils with the consistent water content and with gradually increased polluted materials at intervals, the amounts of settlement, lateral displacement and upheaval were respectively observed. In conclusion, the value of critical surcharge was expressed as q$_{cr}$=2.78$_{cu}$ which was similar to those Tschebotarioff(q$_{cr}$=3.0$_{cu}$) and Meyerhof(q$_{cr}$=(B/2H+$\pi$/2)$_{cu}$) had been proposed. The value of ultimate capacity was expressed as q$_{ult}$=4.84$_{cu}$ which was similar to that of Prandtl. The lateral flow pressure is adeQuately calculated by the eQuation(P$_{max}$=K$_o$ r H) and the maximum value of lateral flow pressure is found near O.3H of layer thickness(H) and is higher to ground surface than the ones in composition pattern, Poulos distribution pattern and softclay soils (CL, CH) which is not polluted. The stability control method used in this research followed the management diagram of Tominaga.Hashimoto, Shibata.Sekiguchi, Matsuo.Kawamura who use the amounts of plasticity displacement by lateral flow. As a result, the ultimate capacity values in the diagram {S$_v$-(Y$_m$/S$_v$)} of Matsuo.Kawamura and in the diagram {(q/Y$_m$)-q} of Shibata. Sekiguchi were smaller than in the ones of load-settlement curve (q-S$_v$).

  • PDF