• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.044 seconds

Model Tests on Deformation Behavior of Soft Ground Under Embankment (성토하부 연약지반의 변형거동에 관한 모형실험)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Hong, Won-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • When embankments are constructed on soft clay deposit, unsymmetrical surcharges due to embankments may generate the excessive vertical settlement and lateral deformation of soft clay foundation. The excessive deformations in soft grounds cause not only stability problem of the embankment itself but also that of the adjacent structures. The objectives of this research are to study the deformational behavior of soft ground due to the embankment load with different loading and soil conditions. Five model tests are carried out with different test conditions. From the results of the model tests, it is concluded that the lateral displacement induced by the embankment load occurs in the range of two times of the embankment width from a toe. In addition, the relationship between loading rate, v, and the vertical settlement of the soft ground, ${\Delta}s$, and the lateral displacement at the toe of embankment, ${\Delta}y_m$, is investigated based on the model test results.

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Site response analysis using true coupled constitutive models for liquefaction triggering

  • Cristhian C. Mendoza-Bolanos;Andres Salas-Montoya;Oscar H. Moreno-Torres;Arturo I. Villegas-Andrade
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • This study focused on nonlinear effective stress site response analysis using two coupled constitutive models, that is, the DM model (Dafalias and Manzari 2004), which incorporated a simple plasticity sand model accounting for fabric change effects, and the PMDY03 model (Khosravifar et al. 2018), that is, a 3D model for earthquake-induced liquefaction triggering and postliquefaction response. A detailed parametric study was conducted to validate the effectiveness of nonlinear site response analysis and porewater pressure (PWP) generation through a true coupled formulation for assessing the initiation of liquefaction at ground level. The coupled models demonstrated accurate prediction of liquefaction triggering, which was in line with established empirical liquefaction triggering relations in published databases. Several limitations were identified in the evaluation of liquefaction using the cyclic stress method, despite its widespread implementation for calculating liquefaction triggering. Variations in shear stiffness, represented by changes in shear wave velocity (Vs1), exerted the most significant influence on site response. The study further indicated that substantial differences in response spectra between nonlinear total stress and nonlinear effective stress analyses primarily occurred when liquefaction was triggered or on the verge of being triggered, as shown by excess PWP ratios approaching unity. These differences diminished when liquefaction occurred towards the later stages of intense shaking. The soil response was predominantly influenced by the higher stiffness values present prior to liquefaction. A key contribution of this study was to validate the criteria used to assess the triggering of level-ground liquefaction using true coupled effective-stress constitutive models, while also confirming the reliability of numerical approximations including the PDMY03 and DM models. These models effectively captured the principal characteristics of liquefaction observed in field tests and laboratory experiments.

Geomorphic-characteristics of debris flow induced by typhoon "RUSA" in 2002 using Shalstab Model and Remote Sensing: case study in Macheon region near Jiri-Mountain (원격탐사와 수치 모형을 이용한 2002년 태풍 "루사"에 의해 발생한 토석류 발생지점특성: 지리산 마천면 지역을 사례로)

  • Kim, Minseok;Kim, Jin Kwan;Cho, Youngchan;Kim, Sukwoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.193-202
    • /
    • 2011
  • Kompsat EOC-1 imagery, high resolution air-photo imagery and Shalstab model were used to analyze the geomorphic characteristics of the place of debris flow occurred by typhon "RUSA" in 2002, Macheon-Myen, Gyeongsang prefecture, Republic of Korea. On gully-head over 35 degree of slope angle, almost debris flow started, where slope angle is more than internal friction angle. The result simulated by Shalstab model presented larger vulnerable area to debris flow than the area where debris flow really occurred, this error would be attributed to the assumption for steady-state condition with full saturated surface. To predict the debris flow accurately, further study for rainfall and soil water flow will be needed.

Effective Impulse Impedances of Deeply Driven Grounding Electrodes

  • Lee, Bok-Hee;Jeong, Dong-Cheol;Lee, Su-Bong;Chang, Keun-Chul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.207-214
    • /
    • 2004
  • This paper presents the characteristics of transient and effective impulse impedances for deeply driven grounding electrodes used in soil with high resistivity or in downtown areas. The laboratory test associated with the time domain performance of grounding piles subjected to a lightning stroke current has been carried out using an actual-sized model grounding system. The ground impedances of the deeply driven ground rods and grounding pile under impulse currents showed inductive characteristics, and the effective impulse ground impedance owing to the inductive component is higher than the power frequency ground impedance. Both power frequency ground impedance and effective impulse ground impedance decrease upon increasing the length of the model grounding electrodes. Furthermore, the effective impulse ground impedances of the deeply driven grounding electrodes are significantly amplified in impulse currents with a rapid rise time. The reduction of the power frequency ground impedance is decisive to improve the impulse impedance characteristics of grounding systems.

Effects of Imperfect Fixing at the Active End of Spring-top Resonant Column Apparatus (주동단에 반력으프링이 부착된 공진우 시험기에서 우동단 불완전 고정의 영향)

  • 민덕기
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.7-14
    • /
    • 1990
  • The two degree of freedom model is proposed to study the effects of imperfect fixing at the active end of spring-top resonant column apparatus. A computer program using the SYMPHONY spreadsheet is developed to calculate the dimensionless frequency, F, from which modulug can be determined. It is found that the effect of reaction mass through the parameter Tr on dimensionless frequency, F, can not be ignored if Tr$\leq$20. As To increases, the variation of F increases. But for Tr$\geq$ 20, the effect of To becomes small. It is recommended that T. be greater than 20 if single degree of freedom model is rosed to determine modulus of soil. It also is found that damping ratios of specimen and apparatus do not strongly affect the dimensionless frequency, F.

  • PDF

Assessment of Landfill Gas Generation - A Case Study of Cheongju Megalo Landfill (매립지 가스 발생량 평가 - 청주권 광역생활폐기물 매립장 사례연구)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.321-330
    • /
    • 2008
  • Methane is a potent greenhouse gas and methane emissions from landfills have been linked to global warming. In this study, LandGEM (Landfill Gas Emission Model) was applied to predict landfill gas quantity over time, and then this result was compared with the data surveyed on the site, Cheongju Megalo Landfill. LandGEM allows the input of site-specific values for methane generation rate (k) and potential methane generation capacity $L_o$, but in this study, k value of 0.05/yr and $L_o$ value of $170m^3/Mg$ were considered to be most appropriate for reflecting non-arid temperate region conventional landfilling, Cheongju Megalo Landfill. High discrepancies between the surveyed data and the predicted data about landfill gas seems to be derived from insufficient compaction of daily soil-cover, inefficient recovery of landfill gas and banning of direct landfilling of food garbage waste in 2005. This study can be used for dissemination of information and increasing awareness about the benefits of recovering and utilizing LFG (landfill gas) and mitigating greenhouse gas emissions.

An Analysis of the Frequency-Dependent Resultant Ground Impedance of Vertical Ground Electrodes Installed in Parallel (병렬로 시공된 수직 접지전극의 합성접지임피던스의 주파수의존성 분석)

  • Lee, Bok-Hee;Cho, Sung-Chul;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • This paper deals with the experimental results of the frequency-dependent resultant ground impedance of vertical ground electrodes installed with a regular n-polygon. In order to propose an effective method of installing the vertically-driven multiple ground electrodes used to obtain the low ground impedance, the resultant ground impedance of ground electrodes installed with a regular n-polygon were measured as functions of the number of ground electrodes and the frequency of test currents and the results were discussed based on the potential interferences among ground electrodes. As a consequence, the effect of potential interference on the resultant ground impedance of vertical ground electrodes is frequency-dependent and it is significant in the low frequency of a few hundreds [Hz]. The resultant ground impedance of multiple vertical ground electrodes is not decreased in linearly proportion to the number of ground electrodes due to the overlapped potential interferences. Also the distributed-parameter circuit model considering the potential interference, the frequency-dependent relative permittivity and resistivity of soil was proposed. The simulated results of the frequency-dependent resultant ground impedance of multiple vertical ground electrodes are in good agreement with the measured data.

Numerical simulation of set-up around shaft of XCC pile in clay

  • Liu, Fei;Yi, Jiangtao;Cheng, Po;Yao, Kai
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.489-501
    • /
    • 2020
  • This paper conducts a complicated coupled effective stress analysis of X-section-in-place concrete (XCC) pile installation and consolidation processes using the dual-stage Eulerian-Lagrangian (DSEL) technique incorporating the modified Cam-clay model. The numerical model is verified by centrifuge data and field test results. The main objective of this study is to investigate the shape effect of XCC pile cross-section on radial total stress, excess pore pressure and time-dependent strength. The discrepancies of the penetration mechanism and set-up effects on pile shaft resistance between the XCC pile and circular pile are discussed. Particular attention is placed on the time-dependent strength around the XCC pile shaft. The results show that soil strength improved more significantly close to the flat side compared with the concave side. Additionally, the computed ultimate shaft resistance of XCC pile incorporating set-up effects is 1.45 times that of the circular pile. The present findings are likely helpful in facilitating the incorporation of set-up effects into XCC pile design practices.

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.