• Title/Summary/Keyword: soil model

Search Result 4,496, Processing Time 0.032 seconds

Estimation on ability of livestock manure digestion for upland crops (밭작물별 가축분 소화능 계량화 평가)

  • Hyun, Byung-Keun;Yun, Hong-Bae;Kwon, Soon-Ik;Jung, Kwang-Yong;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2001
  • Owing to raising number of livestock, we have a problem to solve disposal of livestock manure. We know that soil have the digestion ability of livestock manure as one of multifunctionality. I carried out to investigate of livestock manure digestion (especially pig and chicken manure) that is considered as nitrogen fertilizer in upland crops. The results were summarized as follows: 1. The amount of pig manure was(1999) 4,592,375 tons/year, and chicken manure was 4,488,166 tons/year and equivalent to 41,912 tons N/year and 76,223 tons N/year, respectively. 2. The definition of the digestion ability of livestock manure is as the maximum application amount of livestock manure without injuring soil and plant. And the calculation model of digestion ability of livestock manure(ALMD) is follows: ALMD = amount of nitrogen requirement per each upland crop / {(total nitrogen contents in livestock manure) ${\times}$ (nitrogen fertilizer efficiency of livestock manure)} 3. The amount of ability of pig and chicken manure for upland crops (dry based) were 1,142.9kg/10a and 540.1kg/10a, respectively. 4. The order of amount of digestion ability of livestock manure on upland were vegetables > orchards > miscellaneous grains(corn) > barley > potatoes > pulses > oil seeds & special crops ) fodder crops) mulberry.

  • PDF

The Stability Analysis Method with the Failure Shape in Cutting Slopes (절취사면에서의 파괴형태에 따른 안정해석방법)

  • Kang, Yea Mook;Chee, In Taeg;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.97-106
    • /
    • 1998
  • This study was carried out to investigate the problem of analysis method of circular sliding, which uses a high rate to work out a countermeasure for landslides. The results of this study were summarized as follows : 1. As a result of the analysis of sliding surface along the soil layers in forty model slopes, the boundary layer in weathered soil and weathered rock indicated a very high possibility of sliding than in other places. 2. Because most landslides in Korea occur along the discontinuity face at the boundary of soil layers, below 2m. from land surface, it is a good method for safe design to work the countermeasure for these kinds of landslides in cutting slopes. 3. When the inclination of slopes is fixed and the length of slopes is changed, the cercular sliding slopes were more safe as the soil layers are more shallow and the length of slopes are shorter, but the safety ratio of infinite sliding slopes was same as the other even though their length of slopes was different. 4. As a result of the analysis by cercular sliding analysis method and infinite sliding analysis method with some condition that the inclination of slopes was $30^{\circ}$ degree, because most landslides in Korea occur at this condition, these methods indicated different results to each other as well as cercular sliding analysis method showed too much safety ratio than infinite sliding analysis method.

  • PDF

Behavioral Mechanism of Hybrid Model of ABG: Field Test (현장시험을 통한 ABG 하이브리드 공법의 거동 메커니즘 분석)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Jeong, Nam-Soo;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.523-534
    • /
    • 2010
  • A hybrid system of soil-nailing and compression anchor is proposed in this paper; the system is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. After drilling a hole, installing proposed hybrid systems, and filling the hole with grouting material, prestress is applied to the anchor bar to restrict the deformation at the head and/or to prevent shallow slope failures. However, since the elongation rate of PC strand is much larger than that of steel bar, yield at the steel bar will occur much earlier than the PC strand. It means that the yield load of the hybrid system will be overestimated if we simply add yield loads of the two - anchor bar and PC strands. It might be needed to try to match the yielding time of the two materials by applying the prestress to the anchor bar. It means that the main purpose of applying prestress to the anchor bar should be two-fold: to restrict the deformation at the nail head; and more importantly, to maximize the design load of the hybrid system by utilizing load transfer mechanism that transfers the prestress applied at the tip to the head through anchor bar. In order to study the load transfer mechanism in a systematic way, in-situ pullout tests were performed with the following conditions: soil-nailing only; hybrid system with the variation of prestress stresses from 0kN to 196kN. It was found that the prestress applied to the anchor system will induce the compressive stress to the steel bar; it will result in decrease in the slope of load-displacement curve of the steel bar. Then, the elongation at which the steel bar will reach yield stress might become similar to that of PC strands. By taking advantage of prestress to match elongations at yield, the pullout design load of the hybrid system can be increased up to twice that of the soil-nailing system.

  • PDF

Effects of Nonlinear Motions due to Abutment-Soil Interaction upon Seismic Responses of Multi-Span Simply Supported Bridges (비선형 교대운동이 교량구조물의 지진응답에 미치는 영향분석)

  • 김상효;마호성;이상우;경규혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • Dynamic behaviors of a bridge system with several simple spans are evaluated to examine the effects of nonlinear abutment motions upon the seismic responses of the bridge. The idealized mechanical model for the whole bridge system is developed by adopting the multi-degree-of-freedom system, which can consider various influential components. To compare the results, both linear and nonlinear abutment-backfill models are prepared. The linear system has the constant abutment stiffness, and the nonlinear system has the nonlinear stiffness considering the abutment stiffness degradation due to the abutment-soil interaction. From simulation results, the nonlinear abutment motion is found to have an important influence upon the global bridge motions. Maximum relative distances between adjacent vibration units are found to be larger than those found from the linear system. In particular, maximum relative distances at the location with the highest possibility of unseating failure are increased up to about 30% in the nonlinear system. The effects of nonlinear behavior of an abutment on the bridge seismic behaviors are also increased as the number of span increase. Therefore, it can be concluded that the abutment-soil interaction should be considered in the seismic analysis of the bridge system.

Study on the Characteristics of Shear Strength on the Weathered Granite Soil Slope in Accordance with the Rainfall (강우에 따른 화강암질 풍화토 사면의 전단강도 특성에 관한 연구)

  • Shim Tae-Sup;Kim Sun-Hak;Ki Wan-Seo;Joo Seung-Wan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.349-360
    • /
    • 2004
  • This study calculated the pore water pressure, the depth of seepage, the constant of the strength in accordance with the slope inclination and the rainfall intensity over the slope built by the weathered granite soil (SP, SM). And, the change of the shear strength in accordance with the rainfall has been compared and analyzed by applying the shear strength formula of the unsaturated soil. As a result, the rainfall intensity is stronger and the slope inclination is gentler the seepage speed in accordance with the rainfall became faster proportionally. As a result of comparing and analyzing both the theoretical value of Lumb and the actual value of the model, it can be said that the actual value is faster. Since SM shows the bigger shear strength than SP, it can also be said that as the granules increase, the coefficient of permeability becomes smaller; and as the seepage rate became smaller, it affects the seepage speed. Likewise, the shear strength within the slope displays the smallest shear strength at the inclination of 1:1.5 the reason of its decrease turned out that it was due to the increase of the pore water pressure.

Analysis on the Effectiveness of Environmental-friendly Agriculture Rearing Project (친환경농업 지구조성사업 효과분석에 관한 연구)

  • Hyeon, Byeong-Keun;Son, Yeon-Kyu;Jeong, Sug-Jae;Song, Kwan-Cheol;Kim, Lee-Yeol;Kim, Sun-Kwan;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • The Korean Ministry of Agricultural & Forestry(MAF) has designated some model areas and has supported financially to encourage sustainable farming under the environment-friendly agriculture rearing project(EARP) since 1995. This study was conducted to diagnose the project and to find ways to improve the effectiveness of EARP. The 18 areas (823 ha) such as Gyeonggi-Do, Gangwon-Do, Chungcheongbuk-Do, Chungcheongnam-Do, and Jeju-Do of 32 areas under EARP in 2004 were examined. Most of the practices implemented in EARP areas were not practical for sustainable agriculture except some equipments and facilities. It was thought that practical technologies for sustainable agriculture were more essential than equipments and facilities to improve the effectiveness of EARP. And area-specific technologies are needed to decrease environmental pollution. For example, liquefied slurry application and duck-rice farming in paddy fields near a watershed could increase the possibility of water pollution by nutrient outflow. Soil characteristics were important factors that could affect the effect of practices on environment conservation. Woodchip application and subsoil crash were not effective in coarse-textured soils. It was recommended that every practices under EARP should be re-examined in the light of the effects on environment before implementation and be evaluated by experts after completion.

New Flood Hazard Mapping using Runoff Mechanism on Gamcheon Watershed (유출메커니즘을 활용한 감천유역에서의 새로운 홍수위험지도 작성)

  • Kim, Tae Hyung;Han, Kun Yeun;Park, Jun Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1011-1021
    • /
    • 2016
  • This study performs the potential flood hazard analysis by applying elevation data, soil data and land use data. The susceptibility maps linked to elevation, soil and land use are combined to develop the new types of flood hazard map such as runoff production map and runoff accumulation map. For the development of the runoff production map, land use, soil thickness, permeability, soil erosion and slope data are used as runoff indices. For the runoff accumulation map, elevation, knick point and lowland analysis data are used. To derive an integrated type of flood potential hazard, a TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) technique, which is widely applied in MCDM (Multi-Criteria Decision Making) process, is adopted. The indices applied to the runoff production and accumulation maps are considered as criteria, and the cells of analysis area are considered as alternatives for TOPSIS technique. The model is applied to Gamcheon watershed to evaluate the flood potential hazards. Validation with large scale data shows the good agreements between historical data and runoff accumulation data. The analysis procedure presented in this study will contribute to make preliminary flood hazard map for the public information and for finding flood mitigation measures in the watershed.

Evaluation on Bending Moment of Bridge Approach Slabs under Vehicle Load Considering Soil Settlement (지반침하를 고려한 교량 접속판의 차량하중에 의한 휨모멘트 평가)

  • Back, Sung-Yong;Kim, Jung-Gang;Cho, Baik-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5939-5946
    • /
    • 2013
  • The bridge approach slabs (BAS) to provide a transitional roadway between a roadway pavement and a bridge structure have not performed adequately due to various factors. The current Korean Roadway Design Guidelines treat the BAS as a simply supported beam with 70% of the span length and do not consider settlement and void development underneath the slab. To investigate the effect of soil settlements on the bending moment of BAS, a beam on elastic support (BAS-ES) was used in the present study. The parameters used in this study were span length, washout length, washout location, and soil modulus. It was shown from the parametric study that washout regions closer to the midspan exhibit maximum moment in the slab. Since voids under the BAS have typically been observed to be closer to bridge abutments, the springs from the abutment were removed to simulate settlement and void development in the model. The design moments based on AASHTO LRFD Bridge Design Specifications were compared to those of Korean Standard Specifications for Highway Bridge and Design Trucks for Highway Bridges. Even if the design moment from BAS-ES was used to incorporate the effect of the potential washout, significant savings could still be achieved compared to the current BAS design.

Suggestion of Modified Compression Index for secondary consolidation using by Nonlinear Elasto Viscoplastic Models (비선형 점탄소성 모델을 이용한 2차압밀이 포함된 수정압축지수개발)

  • Choi, Bu-Sung;Im, Jong-Chul;Kwon, Jung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1115-1123
    • /
    • 2008
  • When constructing projects such as road embankments, bridge approaches, dikes or buildings on soft, compressible soils, significant settlements may occur due to the consolidation of these soils under the superimposed loads. The compressibility of the soil skeleton of a soft clay is influenced by such factors as structure and fabric, stress path, temperature and loading rate. Although it is possible to determine appropriate relations and the corresponding material parameters in the laboratory, it is well known that sample disturbance due to stress release, temperature change and moisture content change can have a profound effect on the compressibility of a clay. The early research of Tezaghi and Casagrande has had a lasting influence on our interpretation of consolidation data. The 24 hour, incremental load, oedometer test has become, more or less, the standard procedure for determining the one-dimensional, stress-strain behavior of clays. An important notion relates to the interpretation of the data is the ore-consolidation pressure ${\sigma}_p$, which is located approximately at the break in the slope on the curve. From a practical point of view, this pressure is usually viewed as corresponding to the maximum past effective stress supported by the soil. Researchers have shown, however, that the value of ${\sigma}_p$ depends on the test procedure. furthermore, owing to sampling disturbance, the results of the laboratory consolidation test must be corrected to better capture the in-situ compressibility characteristics. The corrections apply, strictly speaking, to soils where the relation between strain and effective stress is time independent. An important assumption in Terzaghi's one-dimensional theory of consolidation is that the soil skeleton behaves elastically. On the other hand, Buisman recognized that creep deformations in settlement analysis can be important. this has led to extensions to Terzaghi's theory by various investigators, including the applicant and coworkers. The main object of this study is to suggestion the modified compression index value to predict settlements by back calculating the $C_c$ from different numerical models, which are giving best prediction settlements for multi layers including very thick soft clay.

  • PDF

Analysis of Piled Raft Interactions on Clay with Centrifuge Test (원심모형실험을 통한 점토지반에서의 말뚝지지 전면기초 상호작용)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.57-67
    • /
    • 2012
  • In the design for piled rafts, the load capacity of the raft is in general ignored and the load capacities of pile are only considered for the estimation of the total load carrying capacity of the piled raft. The axial resistance of piled raft is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, acts as a key element in the design for piled rafts. In this study, a series of centrifuge model tests has been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) at the stiff and soft clays. From the test results, it is observed that the interactions of piles, soil, and raft has little influences on the load capacities of piles and raft in piled rafts compared with the load capacities of group piles and raft at the same clay soil condition.